Greenleaf[®] Sustainable Productivity PRODUCT CATALOG GROOVING, PROFILIN API RING-GRO INDE INTRODUCTION (IG) MILLING (M) TURNING and BORING (TB) HEAVY TURNING (HT) **GROOVING, PROFILING, and CUT-OFF (GP)** API RING-GROOVE MACHINING (RG) INDEXABLE DRILLING (ID) TUBE SCARFING (TS) SPECIAL ENGINEERING (SE) APPLICATION and TECHNICAL INFORMATION (ATI) At Greenleaf, we use our expertise in advanced materials technology to develop products of superior quality and performance, and we work with our customers to help them use those products in the most efficient manner. It's our technology and our willingness to work closely with our customers that make us a world leader in cutting tools. Our customers mean a lot to us, and we give them our personal attention. If you have the opportunity to visit us, we'll be glad to show you through our facilities. We're here to serve you, and we never lose sight of that fact. Our goal is to help our customers become more successful by solving their productivity problems. We do this in several ways — by developing a better tool design, by producing superior tool materials, or just by offering some good shop-floor advice. Whatever it takes, we'll solve your toughest application problems. While other companies are selling commodities, we're offering technical ability, service, and excellent products. James M. Greenleaf President, Greenleaf Corporation jgreenleaf@greenleafcorporation.com Greenleaf Corporation is a leading developer of cutting tool technology, specializing in the manufacturing of high-performance tungsten carbide and ceramic inserts as well as innovative tool-holding systems. Greenleaf continues to build on nearly 80 years of innovation, which centers on supplying customers with productive solutions to every metalcutting situation. Greenleaf Corporation is positioned to serve the evolving needs of companies in all major segments of the metalcutting industry including aerospace, gas turbine, energy, oil and gas, steel, medical, roll turning, automotive, machine tool and rail. Greenleaf's products are engineered to provide optimal performance against a wide range of materials under the most rigorous metalcutting conditions. In addition to specially engineered tool-holding systems and a comprehensive line of carbide inserts, Greenleaf offers high-quality ceramic and ceramic composite materials, which can be custom designed for specific machining applications. From its headquarters in Saegertown, Pennsylvania, a facility in North Carolina, and sales offices in Europe and China, Greenleaf maintains its commitment to pioneering breakthroughs in cutting tool technology and delivering productivity solutions to customers around the world. ### **Greenleaf Corporation** 18695 Greenleaf Drive Saegertown, PA 16433 USA 800-458-1850 • 814-763-2915 sales@greenleafcorporation.com #### **Greenleaf Europe BV** De Steeg 2 6333 AP Schimmert The Netherlands +31-45-404-1774 eurooffice@greenleafcorporation.com Greenleaf (Hunan) High-Tech Materials Co., Ltd. Changsha, Hunan 410205, China +86-731-89954796 info@greenleafcorporation.com.cn It's who we are... and our promise to you. Greenleaf's commitment to our customers is simple: Sustainable productivity. Greenleaf works tirelessly to offer our customers value-added metal-cutting process solutions that continuously improve overall part quality and long-term production rates and efficiency levels. The economic and environmental benefits of improving and sustaining optimal parameters in machining operations are clear: Reduced machining time requires less power, which means lower production costs and a reduced impact on our environment. Using fewer resources to get more quality parts out the door: It's simple, it's clear, it's sustainable. Greenleaf is in it for the long haul. Our commitment to sustainable productivity in our own corporate operations benefits both the bottom line and the planet, and it is an approach we want to support with every customer in our daily work. We look forward to working closely with you toward this operational goal. # Master Table of Contents | INTRODUCTION TO GREENLEAF | | |--|----------| | Product Guide | IG 04-05 | | Grade Descriptions | IG 06-07 | | · | | | MILLING | | | Table of Contents | M 01 | | Pictorial Index | | | Milling Cutters | | | Hushcut [®] (light and medium duty) | M 04-07 | | Index-0-Cut™ | M 08-11 | | Excelerator® Mill | | | Powermill* | | | Insert Grade Reference | | | Insert Grade Descriptions | | | Technical Data for Milling | | | reamital base for mining | | | TURNING AND BORING | | | Table of Contents | TB 01 | | INSERTS – CARBIDE | | | Carbide Grade Descriptions | TB 04 | | Insert Grade Reference | | | Chipform Application Range | | | ANSI Identification System | | | ISO Identification System | | | Pictorial Index of Carbide Inserts | | | Negative Carbide Inserts | | | Positive Carbide Inserts | | | Radius-Forming Insert and Toolholder | | | INSERTS – CERAMIC | | | Ceramic Grade Descriptions | TB 42 | | Insert Grade Reference | | | Edge Preparation and Application Guide | | | ANSI Identification System | | | ISO Identification System | | | Pictorial Index of Ceramic Inserts | T 48 | | Negative Ceramic Inserts | | | Positive Ceramic Inserts | TB 57-60 | | TOOLHOLDERS – INDUSTRY STANDARD | | | Introduction | TB 61 | | Identification System | | | Pictorial Index of Industry-Standard Toolholders | TB 64-65 | | Negative-Rake Toolholders | | | Positive-Rake Toolholders | TB 79-81 | | Radius Forming Toolholder | TB 82 | | TOOLHOLDERS – QUICK-CHANGE | | | Introduction | TB 83 | | Negative-Rake Toolholders | TB 84 | | Replaceable-Nest Toolholders | | | | | | TOOLHOLDERS – FOR CERAMIC INSERTS | | |--|------------| | Introduction | TR 86-87 | | Identification System | | | Pictorial Index of Ceramic Toolholders | | | Negative-Rake Toolholders | | | Hard Turning | | | Positive-Rake Toolholders | TR 102-107 | | INDUSTRY-STANDARD BORING BARS | | | Introduction | TB 108-109 | | Identification System | TB 110-111 | | Pictorial Index | | | Negative Inserts | TB 114-118 | | Positive Inserts | | | Screw-On | | | CERAMIC-INSERT BORING BARS | | | Introduction | TB 124-125 | | Identification System | TB 126-127 | | Pictorial Index | TB 128-129 | | Negative Inserts | TB 130-133 | | Positive Inserts | TB 134-137 | | HEAVY TURNING | | | Table of Contents | HT 01 | | Introduction | HT 03 | | Grade Descriptions | HT 04-05 | | Heavy Edge Preps | HT 06 | | Chipforms | HT 07 | | Pictorial Index | HT 08-09 | | Inserts | HT 10-26 | | Standard Toolholder | HT 27 | | Tooling Options | HT 28-29 | | GROOVING, PROFILING, and CUT-OFF S | SYSTEMS | | Table of Contents | GP 01 | | Introduction | GP 03 | | INSERTS | | | Grade Descriptions | GP 04-05 | | Grade Reference Guide | GP 06 | | Pictorial Index | GP 07 | | Inserts | GP 08-20 | | Cut-Off System | | | Single-Ended Groovers | | | V-Bottom Round | | | 35° and 55° V-Bottom | GP 18-19 | | Pulley and Poly Groove | | | TOOLHOLDERS AND BARS | | | Introduction | GP 21 | | Pictorial Index | | | V-Bottom Round | GP 24-28 | | Single-Ended Groovers | GP 29-35 | |---|----------| | 55° and 35° V-Bottom | | | Grooving and Profiling Bars | | | Profiling Bars | | | SUPPORT BLADES | | | Introduction | GP 47 | | Overview | | | Support Blades | | | Face Grooving Tools Ordering Instructions | | | Support Blades and Holders | | | Support blades alla noidels | dr 00-02 | | API RING-GROOVE MACHINING | | | Table of Contents | PM 01 | | RING MAX™ Inserts | | | Introduction | DM 02 | | | | | Identification System | | | Grade Descriptions | | | Inserts | KIVI 06 | | RING MAX™ II | D14.07 | | Introduction | | | Identification System | | | Pictorial Index | | | Tooling | | | Reference Information | RM 13-14 | | RING MAX™ III | | | Introduction | | | Identification System | | | Pictorial Index | | | Tooling | | | Reference Information | RM 20-21 | | RING MAX™ CARTRIDGES | | | Identification System | RM 22 | | Cartridges | RM 23-24 | | RING MAX™ STX | | | Introduction | | | Identification System | RM 26 | | Pictorial Index | RM 27 | | Tooling | RM 28 | | Reference Information | | | RING MAX™ Machining Methods Reference Guide | RM 30 | | RING MAX™ Quote and Toolchanger Clearance Request Fo | rmsRM 31 | | | | | INDEXABLE DRILLING | | | Table of Contents | ID 01 | | Introduction | ID 03 | | Grade Descriptions | ID 04 | | Holemills [™] and Inserts | | | Technical Data | ID 06 | | TUBE SCARFING | | |--|-----------| | Table of Contents | TS 01 | | Introduction | TS 03 | | Grade Descriptions | TS 04 | | Pictorial Index | TS 05 | | Inserts | TS 06-08 | | Toolholders | TS 09 | | SPECIAL ENGINEERING | | | Table of Contents | SE 01 | | Introduction | SE 02 | | Aerospace Tools | | | Milling Cutters | SE 02-03 | | Special Inserts | | | Special Designs/Layouts | SE 02-03 | | Quote Form | SE 02 | | APPLICATION and TECHNICAL INFORMATION | l | | Table of Contents | ATI 01 | | CARBIDE | | | Grade Descriptions | ATI 02-03 | | Insert Grade Reference | | | Feed and Speed Data | | | Chipform Application Range | ATI 10 | | CERAMIC | | | Grade Descriptions | | | Insert Grade Reference | | | Feed and Speed Data | | | Edge Preparation and Application Guide | ATI 22-23 | | FORMULAS for TURNING and FACING | | | OPTIONAL CLAMPS | ATI 25 | | CERAMIC PRODUCTIVITY MANUAL | ATI 26-78 | | PRODUCT INDEX | | | Inserts | ATI 80 | | Toolholders | ATI 81-85 | | Milling Cutters | ATI 86 | | | | # **Product Guide** ### Milling Cutters ### Hushcut® Series II Screw-on-Insert Cutter M 04 Quiet and free-cutting mills with screw-on insert designs to make the most out of the available horsepower. The free cutting action results in longer tool life and improved surface finishes. Available in end mills and face mills in a wide range of small-to-large diameters.
The Index-O-Cut™ is a high-performance milling system for all materials thanks to its high shear cutting action and the 45° lead angle on the octagon-style insert. These mills are designed to run at higher speeds and feeds than the competition with low horsepower consumption.. ### C-4 Series Face Mills..... M 14 High-speed ceramic or standard-speed carbide milling for use in high-temp alloys, hard metals, and cast irons at high speeds and accelerated feed rates. Precision nests provide multiple insert configurations and body protection. Multi-Purpose End Mills..... M 18 High-speed ceramic or standard-speed carbide milling with positive and negative designs for a broad range ### **Ball Nose End Mills.....** *M 30* Our ball nose end mills are the only ball nose cutters designed to use ceramic and carbide inserts in the same qualified cutter bodies. Combined with our G-925 carbide and WG-600® and XSYTIN®-1 ceramic inserts, the unique cutter geometry offers better performance, longer tool life and superior cutting action over competitors' mills across a wider spectrum of materials. U.S. Patent No. 8,177,459 B2 #### Powermill® Cutters M 32 Ideal for heavy-duty cutting in severe interruptions and uneven surfaces. Replaceable components maximize cutter life while providing deep depths of cut. ### Heavy Turning Roll Lathe Tooling...... HT 28, SE 03 Greenleaf has extensive experience in the design and manufacture of heavy-turning tooling systems. These systems are extremely productive in heavy-turning applications with both carbide and ceramic inserts.. ### Indexable Drilling Holemill™ System ID 01 Indexable drill utilizing Greenleaf's advanced coated carbide grades for higher speeds, quieter cutting, longer tool life and reduced horsepower consumption. Inserts are positive squares (SPMT) for 4 indexes per insert. 1" to 3" diameter range. ## Tube Scarfing Tube Scarfing...... TS 01 Tube scarfing systems from Greenleaf using our indexable inserts offer decreased downtime, longer tool life, faster tool change time, decreased tool costs and elimination of regrinding problems. Superior seams can be achieved since an accurate radius form is always available on each side of the insert.. ### Greenleaf Surfaces/Geometries TurboForm® Inserts TB 07 Precise finishing with excellent chip control in nickel-based alloys. Very effective for machining wall sections as thin as .050". ### Grooving, Turning, and Boring Systems Face Grooving / Support Blades... GP 47 A selection of 248 width and face grooving diameter combinations to fit our standard advanced ceramic tooling offering. Support blades accept GTS carbide groovers as well as Greenleaf standard ceramic grooving inserts. * These trademarks or registered trademarks are the property of the respective companies. **Trigon Inserts** .. *TB 31, TB 32, TB 39, TB 56* Ceramic and carbide. Flexibility of a triangle with the corner strength of an 80° diamond. # Specially Engineered Products Specially Engineered Products..... .. SE 0 Greenleaf engineers have designed custom operation-specific metal-cutting tools for thousands of customers. Sometimes starting with a concept as simple as a paper sketch, they are able to implement their experience in materials and processes to devise a practical custom application. From individual inserts making special cuts to ganged cutters providing special cutting paths, Greenleaf CAD engineering services can provide a prompt solution for your special metalcutting needs. IG ## Insert Grades ### **Carbide** Greenleaf offers a comprehensive line of carbide inserts in grades ranging from sub-micron C-1 through C-8 classifications. An industry pioneer in coated carbide, Greenleaf offers a variety of uncoated, MT-CVD coated and PVD-coated grades. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. ### Coated **G5125**+ A tough, Co-enriched, CVD-coated grade that is ideally suited for the roughing and semi-finishing of steels in turning. Intended applications range from clean and continuous to heavily interrupted cuts in steels of various hardness and composition, at medium to high speeds and moderate feed rates. GA5023 A high-performance grade designed for the turning and milling of various grades of cast iron, GA5023 features an advanced MT-CVD coating specifically developed to withstand the abrasiveness of cast iron in machining. Applications range from roughing to finishing in most grades of cast iron, including gray, nodular, and others. The high wear resistance and toughness of GA5023 enable high-speed machining in a wide range of feed rates. **GA5025** A high-speed MT-CVD coated grade developed primarily for turning, GA5025 excels in light roughing and finishing applications of carbon and alloy steels, including select stainless steels. GA5025 is preferred when tool life and wear resistance are essential in steel turning. **GA5026** A high-performance grade specifically developed for finish-turning in nickel- and cobalt-based super-alloys, stainless steels, hardened steels, and refractory metals. The advanced MT-CVD coating over a micro-grain substrate offers outstanding wear resistance while maintaining exceptional resistance to notching and deformation common in turning of high-strength materials. GA5026 is best applied at high speeds and low feed rates. A high-performance MT-CVD coated grade for turning all types of steels, GA5035 can be used for heavy roughing to finish-turning applications requiring resistance to heat deformation, thermal shock from interrupted cuts, and abrasion. GA5035 should be applied at high speeds and a moderate range of feeds. GA5035 is the primary choice for steel turning. **GA5036** A high-speed MT-CVD coated milling grade, GA5036 should be used when milling forged and cast steels and select ductile irons. GA5036 constitutes a unique combination of toughness and heat resistance, making it suitable for heavy and light-duty milling at high cutting speeds. It is a great first choice for all steel milling. GA5125 A high-performance MT-CVD coated carbide used primarily for the milling and turning of manganese steel. GA5125 can also be applied in Cr-Mo steels, tool steels, and other alloyed steels in continuous and interrupted turning. GA5125 provides excellent resistance to abrasion, crater wear, thermal shock, deformation, and built-up edge. It performs best when applied at high speeds and moderate feed rates. G-5135 A coarse-grain MT-CVD coated carbide, G-5135 is ideal for rough steel turning operations, including scale and moderate-toheavy interruptions, as well as select steel milling applications. G-5135 is also applicable in the roughing of cast irons and stainless steels. Apply at moderate speeds and high feed rates. G-915 A multi-layer PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels, and low-carbon steels. The coating adds heat and abrasion resistance to the tough substrate. G-915 should be used at moderate speeds and moderate to high feeds. It is a versatile grade that performs well in a variety of materials and operations outside its primary application range, making it a great choice for general machining. This multi-layer PVD-coated carbide grade excels at milling and turning steel castings and forgings. G-9120 was engineered specifically to maximize productivity at moderate to heavy feed rates and high depths of cut, making it ideal for heavyturning applications in steel. G-920 A PVD-coated grade for light-to-medium turning of heat-resistant alloys and some stainless steels. It is also an excellent grade for aluminum and refractory metals. Given its resistance to deformation and notching, G-920 should be applied at higher speeds and is well-suited for grooving and finish-turning of HRSA. G-9230 A PVD-coated grade designed for the machining of heat-resistant alloys, titanium, hardened steels and stainless steels. G-9230 works particularly well in stainless steel turning, interrupted turning of HRSA, and interrupted turning of titanium. G-9230 has superior wear resistance and toughness and is excellent for casting and forging scale conditions. G-925 A high-performance multi-layer PVD-coated grade, G-925 is specifically designed for turning abrasive and difficult-tomachine materials. Typical applications include turning of HRSA, titanium and other refractory metals, stainless steels, and ductile cast irons. G-925 exhibits excellent resistance to notching and deformation. Apply at moderate to high speeds and moderate feeds. A multi-layer PVD-coated grade for steel milling and turning applications requiring additional resistance to mechanical and thermal shock. The multi-layered PVD coating raises the speed envelope and wear resistance in tough milling, indexable drilling, and interrupted turning applications. A PVD-coated grade, G-9610 is designed for turning titanium-based alloys. The high-tech, wear-resistant, chemically stable, and very smooth and lubricious coating protects the heatresistant, sub-micron substrate and allows for higher speeds and extended tool life in continuous cuts in non-ferrous alloys. ### Uncoated Developed for milling heat-resistant alloys, stainless steel, and low-carbon steels at low speeds and moderate to high feeds, G-01 can also be used for turning in the same range of materials with severe interruption or old machinery. **G-01M** A tough sub-micron grade, G-01M is used for milling and rough turning stainless steels—even when rolling or casting skin is present. The edge strength of G-01M allows the use of sharp edges and high positive rakes in continuous or interrupted cuts. G-10 Used for roughing all cast irons in severe conditions, including broaching. The edge strength of G-10 makes it a great choice for roughing Ni-, Co-, and Ti-based alloys with positive rakes, and any machining of non-ferrous materials when toughness
is of prime importance. Apply at moderate speeds and feeds. An excellent general-purpose cast-iron grade, G-02 can be used for milling and turning cast iron at moderately high speeds and medium feeds. G-02 is also a good choice for machining aluminum with positive rakes and light roughing of some heatresistant alloys and stainless steels.. **G-20M** A sub-micron C-2 carbide grade suited for use in light-to-medium turning of titanium and heat-resistant super alloys, G-20M has the strength and edge wear characteristics to resist notching when turning high-strength materials. G-23 is a finishing grade for all cast irons, and other short-chipping non-ferrous materials, such as brass and bronze. Apply G-23 at moderately high speeds and moderate feed rates. Used for finish turning of cast iron and other hardwearing materials at high speeds and light feeds in stable conditions. G-50 A grade used for the heavy roughing of steel and steel castings in unstable conditions, and ferritic stainless steels in most applications, G-50 is tough enough to enable the use of positive rakes G-53 An excellent general-purpose milling grade for steels at moderate speeds and feeds. G-53 has a good combination of toughness and wear resistance for milling, or can be used as an allaround grade for mixed-production applications. **G-60** Used for the heavy rough turning of steel, steel castings, and steel forgings. Apply G-60 at moderate speeds and heavy feed rates and depths of cut. G-60 is more wear-resistant than G-50 but is lower in toughness. A roughing and finishing grade for steel and steel castings, G-74 should be applied at high speeds and moderate to heavy feeds. It is well-suited for the turning of steel rolls. ### Ceramic Greenleaf is the industry leader in the development and manufacture of ceramic and coated ceramic inserts in ANSI standard and special geometries. Some of the most prominent include: # WG-300[®] A SiC whisker-reinforced $\mathrm{Al_2O_3}$ ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300° the first choice worldwide for grooving and turning difficult materials. ### WG-600[®] A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600° include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as milling of hardened steels and select stainless steels. WG-600° is particularly well-suited for finish-turning and grooving of heat-resistant super alloys and is unmatched in both turning and milling of steels with a hardness above 60 HRc. #### WG-700™ A SiC whisker-reinforced Al₂O₃ ceramic featuring improved toughness and a unique low-friction coating. WG-700™ is ideal for turning, grooving, and profiling nickel- and cobalt-based super alloys that other ceramics may struggle in. WG-700™ exhibits exceptional tool life and productivity in next-generation formulations or novel heat treatments of heat-resistant super alloys, and long-reach or thin-walled applications with lower rigidity. ### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted cuts, forging scale removal, and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### GSN100™ An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. ### GEM-8™ An Al₂O₃ + TiC composite ceramic exhibiting excellent hardness and strength at elevated temperatures. GEM-8™ offers a high degree of predictability in roll turning and continuous cuts in ferrous alloys. # Milling | Pictorial Index | M 02-03 | |---|---------------------| | 1211 C 11 | | | Milling Cutters | | | Hushcut® Series II | M 04-07 | | Index-0-Cut™ | M 08-11 | | Excelerator® Mill | M 12-31 | | Powermill® | M 32-3 ² | | nsert Grade Reference for Milling | M 35 | | nsert Grade Descriptions | M 36-37 | | Screw Torque Settings | M 38 | | Excelerator® Mills Setup and Operational Procedures | | | Edge Preparations | M 39 | | Technical Data for Milling | M 41-45 | # **Pictorial Index** ### **Hushcut® Series II Milling System** ### EM90 0° Lead End Mill .375″-2.0″ Diameter page: M 06 ### FM90 0° Lead Face Mill 1.5"-6.0" Diameter *page: M 06* ### Index-O-Cut™ Milling System ### G-OFHP High Positive Face Mill Octagon/Round Inserts 2.0"-8.0" Diameter page: M 10 # Excelerator Milling Cutters and Inserts ### **CP4** Series Face Mill Positive Rake Inserts, Cutters and Nests *page: M 14* #### C4 Series Face Mill Negative Rake Inserts, Cutters and Nests *page: M 16* ### **FMRP** Face Mill Round Positive Inserts 2.0"-4.0" Dia. page: M 18 # Excelerator Milling Cutters and Inserts continued ### **FMRPF** Face Mill (Fine Pitch) Coolant Fed Round Positive Inserts 1.50"-4.0" Dia. *page: M 18* #### **FMRN** Face Mill Round Negative Inserts 2.0"-4.0" Dia. **page:** M 19 ### **FMRNF** Face Mill (Fine Pitch) Coolant Fed Round Negative Inserts 1.50"-4.0" Dia. page: M 19 ### WSRP End Mill Round Positive Inserts .625"-2.50" Dia. page: M 20 ### WSRPF End Mill (Fine Pitch) Round Positive Inserts Coolant Fed .750"-2.0" Dia. page: M 20 ### **WSRN** End Mill Round Negative Inserts Inserts 1.0"-2.5" Dia. *page: M 22* ### WSRNF End Mill (Fine Pitch) Coolant Fed Round Negative Inserts Inserts 1.0"-2.5" Dia. page: M 22 # Excelerator Milling Cutters and Inserts continued ### WSTP End Mill Positive Triangle Inserts .5"-.625" Dia. **page: M 24** ### WSSP End Mill Positive Square Inserts .375"-1.5" Dia. page: M 25 ### WSAN End Mill Parallelogram Inserts 1.0"–2.50" Dia page: M 26 ### XFSP High-Feed Face Mill Square Positive Inserts 1.0" — 1.5" Diameter page: M 27 ### XFSP High-Feed Face Mill Square Positive Inserts 2" Diameter page: M 27 ### SSBN Ball Nose End Mill Ball Nose Inserts .375" — 1" Diameter page: M 30 ### Powermill® Cutters M430LNP-A 30° Lead Face Mill Negative Radial Positive Axial 4"-12" Diameter. page: M34 # **Hushcut® Series II Milling Cutters** Quiet and free-cutting mills with screw-on insert designs to make the most out of the available power. The free-cutting action results in longer tool life and improved surface finishes. Available in end mills and face mills in a wide range of small to large diameters. ### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. # EM90S/L 0° Lead End Mill | D 411 1 | | | Dime | ensions (in | ches) | | | a. 1 la . | V= 11 12: | |------------------|------------------|-------|-------|-------------|-------|-------|----------------|---------------------|--------------| | Part Number | Gage Insert | Α | В | С | D | E | No. of Inserts | Standard Components | *Tune-Up Kit | | EM90S-050R-62W | ADGT-16222DFR5LD | 0.500 | 0.625 | 2.910 | 1 | 0.350 | 1 | PT-589T | TK-01002 | | EM90S-062R-75W | ADGT-16222DFR5LD | 0.625 | 0.750 | 3.030 | 1 | 0.350 | 2 | PT-589T | TK-01003 | | EM90S-075R-75W | ADGT-16222DFR5LD | 0.750 | 0.750 | 3.280 | 1.25 | 0.350 | 3 | PT-589T | TK-02696 | | EM90S-088R-100W | ADGT-16222DFR5LD | 0.875 | 1.000 | 3.530 | 1.25 | 0.350 | 3 | 313631 | TK-02379 | | EM90S-100R-75W | ADGT-16222DFR5LD | 1.000 | 0.750 | 3.530 | 1.5 | 0.350 | 4 | PT-542T | TK-00860 | | EM90S-100R-100W | ADGT-16222DFR5LD | 1.000 | 1.000 | 3.780 | 1.5 | 0.350 | 4 | PT-542T | TK-00860 | | EM90S-125R-125W | ADGT-16222DFR5LD | 1.250 | 1.250 | 3.780 | 1.5 | 0.350 | 5 | PT-542T | TK-00861 | | EM90S-150R-125W | ADGT-16222DFR5LD | 1.500 | 1.250 | 3.780 | 1.5 | 0.350 | 5 | PT-542T | TK-00861 | | EM90L-075R-75W | APHT-32.73PD2R** | 0.750 | 0.750 | 3.380 | 1.35 | 0.530 | 1 | PT-559T | TK-00758 | | EM90L-100R-75W | APHT-32.73PD2R** | 1.000 | 0.750 | 3.880 | 1.85 | 0.530 | 2 | 312679 | TK-00780 | | EM90L-100R-100W | APHT-32.73PD2R** | 1.000 | 1.000 | 4.130 | 1.85 | 0.530 | 2 | 312679 | TK-00780 | | EM90L-100R-100WL | APHT-32.73PD2R** | 1.000 | 1.000 | 6.000 | 3.75 | 0.530 | 2 | 312679 | TK-00780 | | EM90L-125R-75W | APHT-32.73PD2R** | 1.250 | 0.750 | 4.130 | 2.1 | 0.530 | 3 | 312679 | TK-00781 | | EM90L-125R-125W | APHT-32.73PD2R** | 1.250 | 1.250 | 4.380 | 2.1 | 0.530 | 3 | 312679 | TK-00781 | | EM90L-125R-125WM | APHT-32.73PD2R** | 1.250 | 1.250 | 5.250 | 3 | 0.530 | 3 | 312679 | TK-00781 | | EM90L-125R-125WL | APHT-32.73PD2R** | 1.250 | 1.250 | 6.500 | 4.25 | 0.530 | 3 | 312679 | TK-00781 | | EM90L-150R-75W | APHT-32.73PD2R** | 1.500 | 0.750 | 4.130 | 2.1 | 0.530 | 4 | 312679 | TK-00782 | | EM90L-150R-100W | APHT-32.73PD2R** | 1.500 | 1.000 | 4.380 | 2.1 | 0.530 | 4 | 312679 | TK-00782 | | EM90L-150R-125W | APHT-32.73PD2R** | 1.500 | 1.250 | 4.380 | 2.1 | 0.530 | 4 | 312679 | TK-00782 | | EM90L-150R-125W3 | APHT-32.73PD2R** | 1.500 | 1.250 | 4.380 | 2.1 | 0.530 | 3 | 312679 | TK-00781 | | EM90L-150R-125WL | APHT-32.73PD2R** | 1.500 | 1.250 | 6.500 | 4.25 | 0.530 | 3 | 312679 | TK-00781 | |
EM90L-200R-125W | APHT-32.73PD2R** | 2.000 | 1.250 | 4.380 | 2.100 | 0.530 | 5 | 312679 | TK-00783 | NOTE: For information on screw torque settings, please refer to the chart on page M38. # FM90S/L 0° Lead Face Mill | B 4 W 1 | | | Dim | ensions (| inches) | | | ., | 6 | *T 11 1/24 | | |-------------|------------------|-------|-------|-----------|---------|-------|-------------------|-------------|------------------------|--------------|--| | Part Number | Gage Insert | A | В | C | D | E | No. of
Inserts | Keyway | Standard
Components | *Tune-Up Kit | | | FM90S-15R | ADGT-16222DFR5LD | 1.500 | 1.500 | 0.500 | 0.620 | 0.350 | 6 | 1/4 x 5/32 | PT-542T | TK-00862 | | | FM90S-20R | ADGT-16222DFR5LD | 2.000 | 1.500 | 0.750 | 0.750 | 0.350 | 7 | 5/16 x 3/16 | PT-542T | TK-00863 | | | FM90S-25R | ADGT-16222DFR5LD | 2.500 | 1.500 | 1.000 | 0.750 | 0.350 | 8 | 3/8 x 1/4 | PT-542T | TK-00864 | | | FM90S-30R | ADGT-16222DFR5LD | 3.000 | 2.000 | 1.000 | 0.750 | 0.350 | 9 | 3/8 x 1/4 | PT-542T | TK-00913 | | | FM90L-20R | APHT-32.73PD2R** | 2.000 | 1.500 | 0.750 | 0.750 | 0.530 | 5 | 5/16 x 3/16 | 312679 | TK-00783 | | | FM90L-25R | APHT-32.73PD2R** | 2.500 | 1.500 | 1.000 | 0.750 | 0.530 | 6 | 3/8 x 1/4 | 312679 | TK-00784 | | | FM90L-30R | APHT-32.73PD2R** | 3.000 | 2.000 | 1.000 | 0.750 | 0.530 | 7 | 3/8 x 1/4 | 312679 | TK-00785 | | | FM90L-40R | APHT-32.73PD2R** | 4.000 | 2.000 | 1.500 | 1.060 | 0.530 | 8 | 5/8 x 3/8 | 312679 | TK-00786 | | | FM90L-50R | APHT-32.73PD2R** | 5.000 | 2.500 | 1.500 | 1.060 | 0.530 | 10 | 5/8 x 3/8 | 312679 | TK-01249 | | | FM90L-60R | APHT-32.73PD2R** | 6.000 | 2.500 | 1.500 | 1.060 | 0.530 | 12 | 5/8 x 3/8 | 312679 | TK-00787 | | NOTE: For information on screw torque settings, please refer to the chart on page M38. ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ^{**} APET can be used in place of APHT. ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ^{**} APET can be used in place of APHT. # **Hushcut Inserts** ADGT, APHT, and APET | | | Steel | | Stainless
Steel | | Cast
Iron | | Heat-
Resistant
Super Alloys | | | Dimensions (inches) | | | | | | | |---------------------------------|--|-------|---|--------------------|----------|--------------|--------|------------------------------------|----------|------------|---------------------|---------------|--------|-------|-------|-----|-----| | Inserts | Part Number | | P | | | М | ı | K | : | 5 | Part Number | | | | | | | | | ISO (6-915) (6 | | L | W | T | R | A | В | | | | | | | | | | | | ADGT-16222DFR5LD | • | | • | • | | • | | • | | ADGT-100308DFRLD | 0.394 | 0.264 | 0.138 | 0.031 | 16° | 84° | | | ADGT-16224DFR5LD | • | | • | • | | • | | • | | ADGT-100316DFRLD | 0.394 | 0.264 | 0.138 | 0.063 | 16° | 84° | | | APHT-32.73PD2R | • | | • | • | | • | | • | | APHT-160408PDR | 0.647 | 0.375 | 0.187 | 0.031 | 11° | 85° | | | APHT-32.73PD4R | • | | • | • | | • | | • | | APHT-160416PDR | 0.647 | 0.375 | 0.187 | 0.063 | 11° | 85° | | | APHT-32.73PD8R | • | | • | • | | • | | • | | APHT-160432PDR | 0.647 | 0.375 | 0.187 | 0.125 | 11° | 85° | | | APET-32.73XD2R | • | | • | • | | • | | • | | APET-160408PDR | 0.660 | 0.375 | 0.188 | 0.031 | 11° | 85° | | | APET-32.73XD4R | • | | • | • | | • | A | • | A | APET-160416PDR | 0.653 | 0.375 | 0.188 | 0.063 | 11° | 85° | | | APET-32.73XD6R | • | | • | • | | • | | * | | APET-160432PDR | 0.653 | 0.375 | 0.188 | 0.094 | 11° | 85° | | CARBIDE COATINGS: MT-CVD Coated | PVD Coated Uncoated | | | | First Ch | oice 💠 | Second | Choice • | Alte | ernative 🗸 | Grade description | ons — pages N | 136-37 | | | | | # *Index-0-Cut™ Milling Cutters* The Index-O-Cut[™] is a high-performance milling system for all materials thanks to its high-shear cutting action and the 45° lead angle on the octagon-style insert. These mills are capable of running at higher speeds and feeds than the competition with low power consumption. ### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. # Index-0-Cut™ G-OFHP Face Mill | Dout Normhou | Gage Insert | | Dime | ensions (| inches) | | No. of | V | Ctou doud | *Tong Un Vit | |-----------------|-------------|-------|-------|-----------|---------|-------|-------------------|--------|------------------------|--------------| | Part Number | | A | 0.D. | В | C | D** | No. of
Inserts | Keyway | Standard
Components | *Tune-Up Kit | | G-0FHP-0545E200 | 00EW-534 | 2.000 | 2.381 | 1.500 | 0.750 | 0.173 | 4 | 5/16 | PT-546-T | TK-03249 | | G-0FHP-0545E250 | 00EW-534 | 2.500 | 2.879 | 1.750 | 1.000 | 0.173 | 5 | 3/8 | PT-546-T | TK-03165 | | G-0FHP-0545E300 | 00EW-534 | 3.000 | 3.378 | 2.000 | 1.000 | 0.173 | 6 | 3/8 | PT-546-T | TK-03250 | | G-0FHP-0545E400 | 00EW-534 | 4.000 | 4.375 | 2.000 | 1.500 | 0.173 | 7 | 5/8 | PT-546-T | TK-03444 | | G-0FHP-0545E500 | 00EW-534 | 5.000 | 5.374 | 2.000 | 1.500 | 0.173 | 8 | 5/8 | PT-546-T | TK-03445 | | G-0FHP-0545E600 | 00EW-534 | 6.000 | 6.373 | 2.000 | 1.500 | 0.173 | 9 | 5/8 | PT-546-T | TK-03651 | | G-0FHP-0545E800 | 00EW-534 | 8.000 | 8.372 | 2.000 | 2.500 | 0.173 | 10 | 1 | PT-546-T | TK-03437 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. NOTE: Index-O-Cut milling cutters can be ordered in differential pitch for all diameters. NOTE: All Index-O-Cut milling cutters contain coolant/air thru capabilities
except G-OFHP-0545E800 # *Index-0-Cut™ Inserts* 00EW | Inserts | Inserts Part Number | | Steel | | Stainless
Steel
M | | Cast
Iron
K | | Heat-
Resistant
Super Alloys | | Part Number | Dimensions (inches) | | | |---|---------------------|------------|--------|----------|-------------------------|-------|-------------------|-------|------------------------------------|---------|------------------------------|---------------------|-------|-------| | ANSI | G-915 | G-9120 | G-9230 | G-915 | G-9230 | 6-915 | GA5023 | G-915 | G-9230 | ISO | A | Т | R | | | 9 | 00EW-534 | • | * | • | * | • | A | * | • | • | 00EW-060416 | 0.625 | 0.188 | 0.063 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated PVD Coated | Jncoated | First Choi | ce 🔷 | Second (| hoice | Alter | native 🗸 | | • | Grade a | descriptions — pages M 36–37 | | | | ^{**} Maximum depth of cut is 0.173". Maximum depth of cut for ROEW inserts will be half of IC. (0.3125") # Index-0-Cut™ Inserts ROEW | Inserts | Inserts Part Number
ANSI | | Steel
P | | Stainless
Steel
M | | Cast
Iron
K | | at-
stant
Alloys | Part Number | Dimension | ns (inches) | |---------|-----------------------------|---|------------|-------|-------------------------|-------|-------------------|-------|------------------------|-------------|-----------|-------------| | | | | G-9120 | G-915 | 6-9230 | G-915 | GA5023 | 6-915 | G-9230 | ISO | A | T | | | ROEW-534 | • | • | * | • | • | * | • | • | R0EW-060416 | 0.625 | 0.188 | **Performance Calculations** CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Starting Speeds and Feeds for Index-O-Cut™ | Work Material | Insert Grades | Hardness (HRc) | Cutting Speed (SFM) | Maximum Feed per Tooth
(IPT) | |---|---------------|----------------|---------------------|---------------------------------| | Low-Carbon Steel / Free Machining | G-9120 | <25 | 1200-1600 | 0.005-0.010 | | Alloy Steel (4140, 4130, 6150, 8620) | G-9120 | 15-30 | 900-1400 | 0.004-0.007 | | High-Carbon Steel (1080,1541, Nitralloy, 52100) | G-9120 | 25-40 | 600-1000 | 0.003-0.006 | | Tool Steel (A6, D2, P-20, H-13) | G-9120 | <30 | 800-1200 | 0.004-0.008 | | HRSA (Inconel, Hastelloy, Waspaloy) | G-915 | <35 | 150-300 | 0.003-0.007 | | Stainless Steel (304, 316, 17-4 PH) | G-915 | <32 | 900-1500 | 0.004-0.009 | | Cast Iron | GA5023 | <32 | 400-1000 | 0.005-0.010 | # Excelerator® Milling Cutters High-speed ceramic or standard-speed carbide milling for use in high-temp alloys, hard metals, and cast irons at high speeds and accelerated feed rates. Precision nests provide multiple insert configurations and body protection. ### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. # **CP4 Series** ### Positive Rake Face Mill | Part No | umber | D | imensior | ns (inche | s) | | | | Sta | ndard Compone | nts | | |------------|-----------|--------|----------|-----------|-------|------------|-------------|-------------------|--------|---------------|------------|--------------| | Right Hand | Left Hand | A | В | C | D | Keyway | Bolt Circle | No. of
Inserts | Wedge | Wedge Screw | Nest Screw | *Tune-Up Kit | | CP-403R | - | 3.000 | 2.000 | 1.250 | 0.750 | 1/2 x 9/32 | - | 6 | 425605 | 430578 | SE03-02 | TK-01141 | | - | CP-403L | 3.000 | 2.000 | 1.250 | 0.750 | 1/2 x 9/32 | - | 6 | 425605 | 430578 | SE03-02 | TK-01141 | | CP-404R | - | 4.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 8 | 425605 | 425606 | SE03-02 | TK-00841 | | - | CP-404L | 4.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 8 | 425605 | 425606 | SE03-02 | TK-00841 | | CP-405R | - | 5.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 10 | 425605 | 425606 | SE03-02 | TK-00845 | | - | CP-405L | 5.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 10 | 425605 | 425606 | SE03-02 | TK-00845 | | CP-406R | - | 6.000 | 2.250 | 2.000 | 1.000 | 3/4 x 7/16 | - | 12 | 425605 | 425606 | SE03-02 | TK-00842 | | - | CP-406L | 6.000 | 2.250 | 2.000 | 1.000 | 3/4 x 7/16 | - | 12 | 425605 | 425606 | SE03-02 | TK-00842 | | CP-408R | - | 8.000 | 2.250 | 2.500 | 1.500 | 1 x 9/16 | 4 | 16 | 425605 | 425606 | SE03-02 | TK-00843 | | - | CP-408L | 8.000 | 2.250 | 2.500 | 1.500 | 1 x 9/16 | 4 | 16 | 425605 | 425606 | SE03-02 | TK-00843 | | CP-410R | - | 10.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4 | 20 | 425605 | 425606 | SE03-02 | TK-00846 | | - | CP-410L | 10.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4 | 20 | 425605 | 425606 | SE03-02 | TK-00846 | | CP-412R | _ | 12.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4, 7 | 24 | 425605 | 425606 | SE03-02 | TK-00847 | | - | CP-412L | 12.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4, 7 | 24 | 425605 | 425606 | SE03-02 | TK-00847 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. # **CP4 Series** | | Nest Par | t Number | | |--|------------|------------|-------------| | Nests | Right Hand | Left Hand | Gage Insert | | A+ 50 | NPC043R | _ | CDCN 422 | | | _ | NPC043L | CPGN-433 | | A+31
0a. | NPC1543R | _ | CDCN 422 | | (500. 15) | _ | NPC1543L | CPGN-433 | | Å A | NPR043R | _ | DDCN 42 | | | _ | NPR043L | RPGN-43 | | A+38 | NPS143R | _ | CDCN 424 | | 1 1 | _ | NPS143L | SPGN-434 | | † 8+.04 | NPS1543R | | SPGN-434 | | (NO. 15 | _ | NPS1543L | 3run-434 | | A 8+.10 | NPS4543R | _ | SPGN-434 | | and the state of t | _ | NPS4543L | 3F U1-434 | | A-319 -8+.040 -+ | XFNPS8043R | _ | SPGN-433 | | Q Add. | _ | XFNPS8043L |) | NOTE: For applications which will not require the maximum number of inserts, the filler block nest NPB, will act as a replacement for the inserts and insert nests The filler block nest must be locked securely in place with the wedge to insure cutter integrity. $^{{\}it NOTE:} For information on screw torque settings, please refer to the chart on page M38.$ NOTE: Cutters are supplied less insert and nest. Nest must be purchased separately. Insert shape, size and quantity must be determined after choosing cutter and nest. Left-hand cutters can be built to order. # **CP4 Inserts** cpgN CPGN, RPGN and SPGN | Inserts | Part Number | | Steel | | | tainle
Steel
M | | | Ir | nst
on
K | | | | -Resi
per Al | | | | arden
Stee | | Part Number | | Dimensio | ns (inches | ;) | |--------------------------|--------------------------|--------|----------|--------|----------|----------------------|----------|--------|----------|----------------|-----------|---------|----------|-----------------|----------------------|-----------|----------------------|---------------|-----------|-------------------------|-------|----------|------------|-------| | | ANSI | GA5036 | G-915 | G-9120 | G-915 | G-9230 | ®009-5W | G-9230 | G-915 | GSN100" | XSYTIN®-1 | G-915 | G-9230 | ®009-5W | [®] 00E-500 | XSYTIN®-1 | [®] 00€-500 | ∞009-5W | XSYTIN®-1 | ISO | A | Т | F | R | | | CPGN-433 | • | A | • | A | • | * | • | A | • | lack | • | A | • | lack | • | • | • | A | CPGN-120412 | 0.500 | 0.507 | 0.187 | 0.047 | | | CPGN-434 | • | | • | | • | • | • | | • | A | • | | • | lack | • | • | • | | CPGN-120416 | 0.500 | 0.507 | 0.187 | 0.062 | RPGN-43 | • | A | • | A | • | • | • | A | • | A | • | A | • | lack | • | • | • | A | RPGN-120400 | 0.500 | N/A | 0.187 | N/A | SPGN-433 | • | | • | | • | • | • | | • | | • | lack | • | lack | • | • | • | | SPGN-120412 | 0.500 | 0.500 |
0.187 | 0.047 | | | SPGN-434 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SPGN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | CARBIDE COATINGS: MT-CVD | O Coated PVD Coated Unco | | | | | | | Fit-C | hoice ◀ | | 16 | hoice • | | ternativ | | | | | | iptions — pages M 36–37 | | | | | NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. # **C4 Series** # Negative Rake Face Mill | Part No | umber | D | imensior | s (inche | s) | | | | Sta | ındard Compone | nts | | |------------|-----------|--------|----------|----------|-------|------------|-------------|-------------------|--------|----------------|------------|--------------| | Right Hand | Left Hand | A | В | С | D | Keyway | Bolt Circle | No. of
Inserts | Wedge | Wedge Screw | Nest Screw | *Tune-Up Kit | | C-403R | - | 3.000 | 2.000 | 1.250 | 0.750 | 1/2 x 9/32 | _ | 6 | 425605 | 430578 | SE03-02 | TK-00851 | | _ | C-403L | 3.000 | 2.000 | 1.250 | 0.750 | 1/2 x 9/32 | _ | 6 | 425605 | 430578 | SE03-02 | TK-00851 | | C-404R | - | 4.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | _ | 8 | 425605 | 425606 | SE03-02 | TK-00841 | | - | C-404L | 4.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 8 | 425605 | 425606 | SE03-02 | TK-00841 | | C-405R | - | 5.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 10 | 425605 | 425606 | SE03-02 | TK-00845 | | - | C-405L | 5.000 | 2.250 | 1.500 | 1.000 | 5/8 x 3/8 | - | 10 | 425605 | 425606 | SE03-02 | TK-00845 | | C-406R | - | 6.000 | 2.250 | 2.000 | 1.000 | 3/4 x 7/16 | - | 12 | 425605 | 425606 | SE03-02 | TK-00842 | | - | C-406L | 6.000 | 2.250 | 2.000 | 1.000 | 3/4 x 7/16 | - | 12 | 425605 | 425606 | SE03-02 | TK-00842 | | C-408R | - | 8.000 | 2.250 | 2.500 | 1.500 | 1 x 9/16 | 4 | 16 | 425605 | 425606 | SE03-02 | TK-00843 | | - | C-408L | 8.000 | 2.250 | 2.500 | 1.500 | 1 x 9/16 | 4 | 16 | 425605 | 425606 | SE03-02 | TK-00843 | | C-410R | - | 10.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4 | 20 | 425605 | 425606 | SE03-02 | TK-00846 | | - | C-410L | 10.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4 | 20 | 425605 | 425606 | SE03-02 | TK-00846 | | C-412R | - | 12.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4, 7 | 24 | 425605 | 425606 | SE03-02 | TK-00847 | | - | C-412L | 12.000 | 2.750 | 2.500 | 1.500 | 1 x 9/16 | 4, 4-3/4, 7 | 24 | 425605 | 425606 | SE03-02 | TK-00847 | * Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. NOTE: Cutters are supplied less insert and nest. Nest must be purchased separately. Insert shape, size and quantity must be determined after choosing cutter and nest. Left-hand cutters can be built to order. # C4 Series ### Nests | | Nest Par | t Number | | |---------------|--------------|-----------|-------------| | Nests | Right Hand | Left Hand | Gage Insert | | t | NNC043R | _ | CNGN-433 | | A+.50 | _ | NNC043L | CNUN-433 | | UA, | NNCO45R | _ | CNGN-453 | | | | NNCO45L | CNdN-433 | | + | NNC1543R | _ | CNGN-433 | | A+31 | | NNC1543L | CNdN-455 | | 15 1 | NNC1545R | _ | CNGN-453 | | | _ | NNC1545L | CNdN-455 | | t | NNR043R | _ | RNGN-43 | | A DIA. | _ | NNR043L | NINON-45 | | + () | NNR045R | _ | RNGN-45 | | | 1 | NNR045L | NNON-45 | | t , | NNS143R | _ | SNGN-434 | | A+38 | _ | NNS143L | 31001-434 | | d RAD. | NNS145R | _ | SNGN-454 | | / | _ | NNS145L | PCF-NDNC | | A 1- 8+04 | NNS1543R | _ | SNGN-434 | | A+31 | _ | NNS1543L | PCF-NDNC | | # (RAD. 15) | NNS1545R | _ | SNGN-454 | | | - | NNS1545L | PCF-NDNC | | B + .10 → | NNS4543R | _ | SNGN-434 | | ÎÑA. | _ | NNS4543L | דכד זוטווכ | | (RAD. | NNS4545R | _ | SNGN-454 | | <u> </u> | - | NNS4545L | יירר-זוטווכ | NOTE: For applications which will not require the maximum number of inserts, the filler block nest NNB, will act as a replacement for the inserts and insert nests The filler block nest must be locked securely in place with the wedge to insure cutter integrity. # C4 Inserts CNGN, RNGN, and SNGN | Inserts | Part Number | | Steel
P | l | | tainle
Stee | | | lr | st
on | | | | -Resi
er Al | | | Ha | arder
Stee
H | | Part Number | | Dimensio | ns (inches | ;) | |---------|-------------|--------|------------|--------|----------|----------------|----------|--------|------------------|----------|-----------|----------|----------|----------------|----------|-----------|----------------------|--------------------|-----------|-------------|-------|----------|------------|-------| | scr.o | ANSI | GA5036 | G-915 | G-9120 | G-915 | G-9230 | ®009-5W | G-9230 | G-915 | GSN100" | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | WG-300® | XSYTIN®-1 | [®] 00€-300 | ∞009-5W | XSYTIN®-1 | ISO | A | т | F | R | | | CNGN-433 | • | A | • | A | • | * | • | A | • | lack | • | A | • | lack | • | • | • | lack | CNGN-120412 | 0.500 | 0.508 | 0.187 | 0.047 | | | CNGN-434 | • | | • | A | • | • | • | | • | | • | | • | A | • | • | • | | CNGN-120416 | 0.500 | 0.508 | 0.187 | 0.062 | | | CNGN-453 | • | A | • | A | • | • | • | A | • | A | • | A | • | A | • | • | • | | CNGN-120712 | 0.500 | 0.508 | 0.312 | 0.047 | | | CNGN-454 | • | | • | A | • | • | • | | • | | • | | • | | • | • | • | | CNGN-120716 | 0.500 | 0.508 | 0.312 | 0.062 | | | RNGN-43 | • | | • | | • | • | • | \blacktriangle | • | | • | | • | | • | • | • | | RNGN-120400 | 0.500 | _ | 0.187 | _ | | | RNGN-45 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | RNGN-120700 | 0.500 | - | 0.312 | _ | SNGN-433 | • | A | • | A | • | • | • | | • | A | • | A | • | A | • | • | • | | SNGN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SNGN-434 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SNGN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | | SNGN-453 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SNGN-120712 | 0.500 | 0.500 | 0.312 | 0.046 | | | SNGN-454 | • | | • | lack | • | ♦ | • | | • | | ♦ | | • | | • | • | • | | SNGN-120716 | 0.500 | 0.500 | 0.312 | 0.062 | NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. # FMRP-FMRPF ### Round Positive Face Mill Right-Hand Face Mill Shown | Part N | umber | | D | imensio | ns (inche | s) | | | | | Standard Co | mponent | s | | |------------|-------------|-----------------|-------|---------|-----------|-------|-------------------|-------------------|-----------|--|----------------|---------|-----------------|-----------------| | Right Hand | Left Hand** | Gage
Inserts | A | В | c | D | No. of
Inserts | Mounting
Screw | Keyway | (in the second s | Anvil Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | FMRP-200R | | RPGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 4 | 3/8 SHCS | 5/16x3/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00649 | | | FMRP-200L | RPGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 4 | 3/8 SHCS | 5/16x3/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00649 | | FMRP-250R | | RPGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 4 | 1/2 SHCS | 3/8x1/4 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00814 | | | FMRP-250L | RPGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 4 | 1/2 SHCS | 3/8x1/4 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00814 | | FMRP-300R | | RPGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 5 | 5/8 SHCS | 1/2x 5/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00815 | | | FMRP-300L | RPGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 5 | 5/8 SHCS | 1/2x5/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00815 | | FMRP-400R | | RPGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 6 | 15LS | 5/8x3/8 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00816 | | | FMRP-400L | RPGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 6 | 15LS
 5/8x3/8 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00816 | | FMRPF-150R | | RPGN-43 | 1.500 | 1.750 | 0.750 | 2.000 | 5 | 3/8 SHCS | 5/16x3/16 | - | - | 3025-1 | 438919 | TK-03861 | | | FMRPF-150L | RPGN-43 | 1.500 | 1.750 | 0.750 | 2.000 | 5 | 3/8 SHCS | 5/16x3/16 | - | - | 3025-1 | 438919 | TK-03861 | | FMRPF-200R | | RPGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 6 | 3/8 SHCS | 5/16x3/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04689 | | | FMRPF-200L | RPGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 6 | 3/8 SHCS | 5/16x3/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04689 | | FMRPF-250R | | RPGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 7 | 1/2 SHCS | 3/8x1/4 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04195 | | | FMRPF-250L | RPGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 7 | 1/2 SHCS | 3/8x1/4 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04195 | | FMRPF-300R | | RPGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 7 | 5/8 SHCS | 1/2x 5/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00816 | | | FMRPF-300L | RPGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 7 | 5/8 SHCS | 1/2x 5/16 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-00816 | | FMRPF-400R | | RPGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 10 | 15LS | 5/8x3/8 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04425 | | | FMRPF-400L | RPGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 10 | 15LS | 5/8x3/8 | 308341 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04425 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. NOTE: FMRPF milling cutters contain coolant/air thru capabilities. # FMRP-FMRPF Inserts RPGN | Inserts | Part Number | | Steel
P | | | tainle
Steel
M | | | | st
on | | | | t-Resi
per Al | stant
loys | | Н | arder
Stee
H | | Part Number | Dimension | ns (inches) | |---------|-------------|--------|------------|--------|-------|----------------------|---------|--------|-------|----------|-----------|-------|--------|------------------|---------------|-----------|---------|--------------------|-----------|-------------|-----------|-------------| | | ANSI | GA5036 | G-915 | G-9120 | G-915 | G-9230 | ®009-5M | G-9230 | 6-915 | GSN100™ | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | WG-300® | XSYTIN®-1 | ™G-300® | ∞009-5W | XSYTIN®-1 | ISO | A | т | | | RPGN-43 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | RPGN-120400 | 0.500 | 0.187 | CERAMIC CLASSIFICATION: Whisker Ceramic | Phase-Toughened | Silicon Nitride | Alumina TiC | NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. ^{**} Left-Hand cutters are made to order only. # FMRN-FMRNF # Round Negative Face Mill Right-Hand Face Mill Shown | Part N | umber | | D | imensio | ns (inche | s) | | | | | Standard Co | mponent | S | | |-------------|-------------|-----------------|-------|---------|-----------|-------|-------------------|-------------------|-----------|--|----------------|---------|-----------------|-----------------| | Right Hand | Left Hand** | Gage
Inserts | A | В | C | D | No. of
Inserts | Mounting
Screw | Keyway | (in the second s | Anvil Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | FMRN-200R | | RNGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 4 | 3/8 SHCS | 5/16x3/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02695 | | | FMRN-200L | RNGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 4 | 3/8 SHCS | 5/16x3/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02695 | | FMRN-250R | | RNGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 4 | 1/2 SHCS | 3/8x1/4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02695 | | | FMRN-250L | RNGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 4 | 1/2 SHCS | 3/8x1/4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02695 | | FMRN-300R | | RNGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 5 | 5/8 SHCS | 1/2x 5/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02697 | | | FMRN-300L | RNGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 5 | 5/8 SHCS | 1/2x5/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02697 | | FMRN-400R | | RNGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 6 | 15LS | 5/8x3/8 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02698 | | | FMRN-400L | RNGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 6 | 15LS | 5/8x3/8 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02698 | | FMRNF-150R† | | RNGN-43 | 1.500 | 1.750 | 0.750 | 2.000 | 5 | 3/8 SHCS | 5/16x3/16 | - | - | 3025-1 | 438919 | TK-03861 | | | FMRNF-150L† | RNGN-43 | 1.500 | 1.750 | 0.750 | 2.000 | 5 | 3/8 SHCS | 5/16x3/16 | - | - | 3025-1 | 438919 | TK-03861 | | FMRNF-200R | | RNGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 6 | 3/8 SHCS | 5/16x3/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02698 | | | FMRNF-200L | RNGN-43 | 2.000 | 1.750 | 0.750 | 2.500 | 6 | 3/8 SHCS | 5/16x3/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-02698 | | FMRNF-250R | | RNGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 7 | 1/2 SHCS | 3/8x1/4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04195 | | | FMRNF-250L | RNGN-43 | 2.500 | 1.750 | 1.000 | 3.000 | 7 | 1/2 SHCS | 3/8x1/4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04195 | | FMRNF-300R | | RNGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 8 | 5/8 SHCS | 1/2x 5/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04415 | | | FMRNF-300L | RNGN-43 | 3.000 | 2.000 | 1.250 | 3.500 | 8 | 5/8 SHCS | 1/2x 5/16 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04415 | | FMRNF-400R | | RNGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 10 | 15LS | 5/8x3/8 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04407 | | | FMRNF-400L | RNGN-43 | 4.000 | 2.250 | 1.500 | 4.500 | 10 | 15LS | 5/8x3/8 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32x1/2 SHCS | TK-04407 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. ${\it NOTE: FMRNF milling cutters contain coolant/air\ thru\ capabilities.}$ NOTE: For Insert RNGN-42, use anvil 312780. For insert RNGN-45, use no anvil. # FMRN-FMRNF Inserts RNGN | Inserts | Part Number | | Steel
P | l | | tainle
Steel
M | | | | | | | | t-Resi
per Al | | | На | arder
Stee | | Part Number | Dimensio | ns (inches) | |---------|-------------|--------|------------|--------|----------|----------------------|---------|--------|----------|---------|-----------|-------|----------|------------------|---------------------|-----------|---------|---------------|-----------|-------------|----------|-------------| | | ANSI | GA5036 | 6-915 | G-9120 | G-915 | G-9230 | ∞009-5W | G-9230 | 6-915 | GSN100" | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | WG-300 [®] | XSYTIN®-1 | WG-300® | ®009-5W | XSYTIN®-1 | ISO | A | T | | | RNGN-42 | • | A | • | A | • | • | • | A | • | | • | A | • | | • | • | • | | RNGN-120300 | 0.500 | 0.125 | | | RNGN-43 | • | | • | | • | • | • | | • | A | • | | • | | • | • | • | | RNGN-120400 | 0.500 | 0.187 | | | RNGN-45 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | RNGN-120700 | 0.500 | 0.312 | Alternative A Second Choice First Choice ◆ CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. **Grade descriptions** — pages M 36–37 ^{**} Left-Hand cutters are made to order only. [†] FMRNF-150 will not accept RNGN-42 or RNGN-45. # **WSRP-WSRPF** ### Round Positive End Mill Right-Hand Cutter Shown | Part N | umber | | | Dime | ensions
(i | nches) | | | Standard | d Compo | nents | | |--------------------|--------------------|-----------------|-------|-------|------------|--------|-------------------|--------|------------------|---------|-------------------|-----------------| | Right Hand | Left Hand** | Gage
Inserts | A | В | С | D | No. of
Inserts | (a) | Anvil Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | WSRP-60000.6-RH † | | RPGN-21.5 | 0.625 | 1.250 | 3.160 | 0.625 | 2 | = | _ | 423978 | #3-48 x 1/4 SHCS | TK-00879 | | | WSRP-60000.6-LH † | RPGN-21.5 | 0.625 | 1.250 | 3.160 | 0.625 | 2 | _ | _ | 423978 | #3-48 x 1/4 SHCS | TK-00879 | | WSRP-60000.7-RH † | | RPGN-2.52 | 0.750 | 1.250 | 3.280 | 0.750 | 2 | _ | _ | 429323 | SE02-01 | TK-00880 | | | WSRP-60000.7-LH † | RPGN-2.52 | 0.750 | 1.250 | 3.280 | 0.750 | 2 | _ | _ | 429323 | SE02-01 | TK-00880 | | WSRP-60001A-RH | | RPGN-2.52 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | ı | _ | 429323 | SE02-01 | TK-00917 | | | WSRP-60001A-LH | RPGN-2.52 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | - | _ | 429323 | SE02-01 | TK-00917 | | WSRP-60001-RH | | RPGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | _ | _ | 425716 | SE02-01 | TK-00852 | | | WSRP-60001-LH | RPGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | - | _ | 425716 | SE02-01 | TK-00852 | | WSRP-60001.2-RH | | RPGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 3 | - | _ | 425716 | SE02-01 | TK-00852 | | | WSRP-60001.2-LH | RPGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 3 | - | - | 425716 | SE02-01 | TK-00852 | | WSRP-60001.5-RH | | RPGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 3 | - | _ | 3025-1 | 438919 | TK-00645 | | | WSRP-60001.5-LH | RPGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 3 | - | _ | 3025-1 | 438919 | TK-00645 | | WSRP-60002-RH | | RPGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 3 | 308341 | #4-40 x 1/4 FHCS | 3025-1 | 438919 | TK-00648 | | | WSRP-60002-LH | RPGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 3 | 308341 | #4-40 x 1/4 FHCS | 3025-1 | 438919 | TK-00648 | | WSRP-60002.5-RH | | RPGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 4 | 308341 | #4-40 x 1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-00649 | | | WSRP-60002.5-LH | RPGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 4 | 308341 | #4-40 x 1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-00649 | | WSRPF-60000.7-RH † | | RPGN-21.5 | 0.750 | 1.250 | 3.260 | 0.750 | 3 | - | _ | 423978 | #3-48 x 1/4 SHCS | TK-00879 | | | WSRPF-60000.7-LH † | RPGN-21.5 | 0.750 | 1.250 | 3.260 | 0.750 | 3 | - | _ | 423978 | #3-48 x 1/4 SHCS | TK-00879 | | WSRPF-60001A-RH | | RPGN-2.52 | 1.000 | 1.250 | 3.280 | 0.750 | 4 | - | _ | 429323 | SE02-04 | TK-00880 | | | WSRPF-60001A-LH | RPGN-2.52 | 1.000 | 1.250 | 3.280 | 0.750 | 4 | - | _ | 429323 | SE02-04 | TK-00880 | | WSRPF-60001-RH | | RPGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 4 | _ | _ | 429323 | SE02-04 | TK-00852 | | | WSRPF-60001-LH | RPGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 4 | - | _ | 429323 | SE02-04 | TK-00852 | | WSRPF-60001.2-RH | | RPGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 5 | _ | _ | 425716 | SE02-04 | TK-00852 | | | WSRPF-60001.2-LH | RPGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 5 | - | _ | 425716 | SE02-04 | TK-00852 | | WSRPF-60001.5-RH | | RPGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 4 | _ | _ | 3025 | 438919 | TK-00645 | | | WSRPF-60001.5-LH | RPGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 4 | - | _ | 3025 | 438919 | TK-00645 | | WSRPF-60002-RH | | RPGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 4 | 308341 | #4-40 x 1/4 FHCS | 3025 | 438919 | TK-00648 | | | WSRPF-60002-LH | RPGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 4 | 308341 | #4-40 x 1/4 FHCS | 3025 | 438919 | TK-00648 | | WSRPF-60002.5-RH | | RPGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 5 | 308341 | #4-40 x 1/4 FHCS | 3025 | 438919 | TK-00649 | | | WSRPF-60002.5-LH | RPGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 5 | 308341 | #4-40 x 1/4 FHCS | 3025 | 438919 | TK-00649 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. ^{**} Left-Hand cutters are made to order only. [†] No thru-tool coolant available # **WSRP-WSRPF** Inserts RPGN | Inserts | Part Number | | Steel
P | | | ainle
Steel
M | | | Ca
Ire | ist
on
K | | | | -Resi
er Al | | | | orden
Stee
H | | Part Number | Dimensio | ns (inches) | |---------|-------------|--------|------------|--------|----------|---------------------|----------|--------|-----------|----------------|-----------|-------|--------|----------------|----------|-----------|---------|--------------------|-----------|-------------|----------|-------------| | | ANSI | GA5036 | G-915 | G-9120 | 6-915 | G-9230 | ®009-9M | G-9230 | G-915 | GSN100™ | XSYTIN®-1 | G-915 | G-9230 | ®009-9M | ®00E-9M | XSYTIN®-1 | ®00€-9M | ®009-5W | XSYTIN®-1 | ISO | A | т | | | RPGN-21.5 | • | | • | A | • | * | • | A | • | A | • | | • | lack | ♦ | • | • | | RPGN-060200 | 0.250 | 0.094 | | | RPGN-2.52 | • | | • | A | • | ♦ | • | | • | A | • | | • | A | • | • | • | | RPGN-070300 | 0.312 | 0.125 | | | RPGN-32 | • | | • | A | • | • | • | | • | A | • | | • | A | • | • | • | | RPGN-090300 | 0.375 | 0.125 | | | RPGN-43 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | RPGN-120400 | 0.500 | 0.187 | NOTE: For additional nose radii and available edge preps, please contact the Greenleaf Tech Team. # **Maximum RPM** | Cutter Part Number | Max RPM Carbide | Max RPM Ceramic | |--------------------|-----------------|-----------------| | WSRP-60000.6 | 15,000 | 40,000 | | WSRP-60000.7 | 12,500 | 35,000 | | WSRP-60001A | 9,500 | 26,000 | | WSRP-60001 | 9,500 | 26,000 | | WSRP-60001.2 | 7,500 | 21,000 | | WSRP-60001.5 | 6,200 | 19,500 | | WSRP-60002 | 4,600 | 13,000 | | WSRP-60002.5 | 3,800 | 10,000 | | WSRPF-60000.7 | 12,500 | 35,000 | | WSRPF-60001A | 9,500 | 26,000 | | WSRPF-60001 | 9,500 | 26,000 | | WSRPF-60001.2 | 7,500 | 21,000 | | WSRPF-60001.5 | 6,200 | 19,500 | | WSRPF-60002 | 4,600 | 13,000 | | WSRPF-60002.5 | 3,800 | 10,000 | # **WSRN-WSRNF** # Round Negative End Mill Right-Hand Cutter Shown | Part N | umber | | | Dime | ensions (i | nches) | | | Standar | d Compo | nents | | |---------------------|---------------------|-----------------|-------|-------|------------|--------|-------------------|--|----------------|---------|-------------------|-----------------| | Right Hand | Left Hand** | Gage
Inserts | A | В | C | D | No. of
Inserts | (in the second s | Anvil Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | WSRN-60001-RH | | RNGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 2 | - | - | 425716 | SE02-01 | TK-00853 | | | WSRN-60001-LH | RNGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 2 | - | - | 425716 | SE02-01 | TK-00853 | | WSRN-60001.2-RH | | RNGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 3 | _ | _ | 425716 | SE02-01 | TK-00852 | | | WSRN-60001.2-LH | RNGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 3 | - | - | 425716 | SE02-01 | TK-00852 | | WSRN-60001.5-RH | | RNGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 3 | - | _ | 3025-1 | 438919 | TK-00645 | | | WSRN-60001.5-LH | RNGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 3 | - | - | 3025-1 | 438919 | TK-00645 | | WSRN-60002-RH ++ | | RNGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 3 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | | | WSRN-60002-LH ++ | RNGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 3 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | | WSRN-60002.5-RH ++ | | RNGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02695 | | | WSRN-60002.5-LH ++ | RNGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02695 | | WSRNF-600001-RH | | RNGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | - | _ | 425716 | SE02-01 | TK-00853 | | | WSRNF-600001-LH | RNGN-32 | 1.000 | 1.250 | 3.280 | 0.750 | 3 | - | - | 425716 | SE02-01 | TK-00853 | | WSRNF-60001.2-RH |
| RNGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 4 | _ | - | 425716 | SE02-01 | TK-00853 | | | WSRNF-60001.2-LH | RNGN-32 | 1.250 | 1.250 | 3.530 | 1.000 | 4 | - | - | 425716 | SE02-01 | TK-00853 | | WSRNF-60001.5-RH | | RNGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 4 | _ | - | 3025-1 | 438919 | TK-00645 | | | WSRNF-60001.5-LH | RNGN-43 | 1.500 | 1.720 | 4.000 | 1.250 | 4 | - | - | 3025-1 | 438919 | TK-00645 | | WSRNF-60002-RH †† | | RNGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 4 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | | | WSRNF-60002-LH †† | RNGN-43 | 2.000 | 1.720 | 4.000 | 1.250 | 4 | 313572 #4-40x1/4 FHCS 3025-1 | | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | | WSRNF-60002.5-RH ++ | | RNGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 6 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | | | WSRNF-60002.5-LH †† | RNGN-43 | 2.500 | 1.750 | 4.000 | 1.250 | 6 | 313572 | #4-40x1/4 FHCS | 3025-1 | #10-32 x 1/2 SHCS | TK-02703 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ^{**} Left-Hand cutters are made to order only. ^{††} For Insert RNGN-42, use anvil 313596. For insert RNGN-45, use no anvil. NOTE: For information on screw torque settings, please refer to the chart on page M38. # **WSRN-WSRNF** Inserts RNGN | Inserts | Part Number | | Steel
P | | | tainle
Steel
M | | | | ast
on
K | | | | t-Resi
per Al | stant
loys | | На | arder
Stee
H | | Part Number | Dimensio | ns (inches) | |------------------------|---|--------|------------|--------|----------|----------------------|---------|--------|----------|----------------|-----------|-------|----------|------------------|---------------|-----------|---------------------|--------------------|-----------|-------------|----------|-------------| | | ANSI | GA5036 | G-915 | 6-9120 | G-915 | G-9230 | ∞009-5W | G-9230 | G-915 | GSN100™ | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | ∞00E-9M | XSYTIN®-1 | wG-300 [∞] | ∞009-5W | XSYTIN®-1 | ISO | A | T | | | RNGN-32 | • | A | • | A | • | • | • | A | • | | • | A | • | A | • | • | • | A | RNGN-090300 | 0.375 | 0.125 | | | RNGN-42 | • | A | • | | • | • | • | | • | | • | A | • | | • | • | • | | RNGN-120300 | 0.500 | 0.125 | | | RNGN-43 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | RNGN-120400 | 0.500 | 0.187 | | | RNGN-45 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | RNGN-120700 | 0.500 | 0.313 | | CARBIDE COATINGS: MT-C | DE COATINGS: MT-CVD Coated Uncoated First Choice ◆ Second Choice ◆ Alternative ▲ Grade descriptions — pages M 36–37 | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. # **Maximum RPM** | Cutter Part Number | Max RPM Carbide | Max RPM Ceramic | |--------------------|-----------------|-----------------| | WSRN-60001 | 9,500 | 26,000 | | WSRN-60001.2 | 7,500 | 21,000 | | WSRN-60001.5 | 6,200 | 19,500 | | WSRN-60002 | 4,600 | 13,000 | | WSRN-60002.5 | 3,800 | 10,000 | | WSRNF-60001 | 9,500 | 26,000 | | WSRNF-60001.2 | 7,500 | 21,000 | | WSRNF-60001.5 | 6,200 | 19,500 | | WSRNF-60002 | 4,600 | 13,000 | | WSRNF-60002.5 | 3,800 | 10,000 | # **WSTP** # Triangle Positive End Mill Right-Hand Cutter Shown | Part N | umber | | | Dim | ensions (| inches) | | Standard | Components | | |---------------|---------------|-----------------|-------|-------|-----------|---------|-------------------|----------|-------------|-----------------| | Right Hand | Left Hand | Gage
Inserts | A | В | C | D | No. of
Inserts | Clamp | Clamp Screw | *Tune-Up
Kit | | WSTP-70.50-RH | | TPGN-222 | 0.500 | 0.875 | 2.66 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | | WSTP-70.50-LH | TPGN-222 | 0.500 | 0.875 | 2.66 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | WSTP-70.56-RH | | TPGN-222 | 0.562 | 1.000 | 2.78 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | | WSTP-70.56-LH | TPGN-222 | 0.562 | 1.000 | 2.78 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | WSTP-70.62-RH | | TPGN-222 | 0.625 | 1.000 | 2.91 | 0.625 | 1 | 429871 | PT-317T | TK-00897 | | | WSTP-70.62-LH | TPGN-222 | 0.625 | 1.000 | 2.91 | 0.625 | 1 | 429871 | PT-317T | TK-00897 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. # **WSTP Inserts** TPGN | Inserts | Part Number | | Steel
P | | | tainle
Steel
M | | | | ast
on
K | | | Heat
Sup | t-Resi
per Al | stant
loys | | На | arden
Stee | ed
I | Part Number | Dime | ensions (in | ches) | |---------|-------------|--------|------------|--------|-------|----------------------|---------|--------|-------|----------------|-----------|-------|-------------|------------------|---------------|-----------|---------|---------------|-----------|-------------|-------|-------------|-------| | | ANSI | GA5036 | G-915 | G-9120 | G-915 | 6-9230 | ™G-600® | GA5023 | G-915 | GSN100" | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | ®00€-500 | XSYTIN®-1 | WG-300® | ∞009-5W | XSYTIN®-1 | ISO | A | T | R | | | TPGN-222 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | TPGN-110308 | 0.250 | 0.125 | 0.031 | NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. # **Maximum RPM** | Cutter Part Number | Max RPM Carbide | Max RPM Ceramic | |--------------------|-----------------|-----------------| | WSTP-70.50 | 19,000 | 35,000 | | WSTP-70.56 | 17,000 | 35,000 | | WSTP-70.62 | 15,000 | 35,000 | # **WSSP** # Square Positive End Mill Right-Hand Cutter Shown | Part N | umber | | | Dime | ensions (in | ches) | | Standard | Components | | |-----------------|-----------------|-----------------|-------|-------|-------------|-------|-------------------|----------|----------------|-----------------| | Right Hand | Left Hand | Gage
Inserts | A | В | C | D | No. of
Inserts | Clamp | Screw | *Tune-Up
Kit | | WSSP-70000.3-RH | | SPGN-21.52 | 0.375 | 0.750 | 2.310 | 0.375 | 1 | 429871 | PT-317T | TK-00897 | | | WSSP-70000.3-LH | SPGN-21.52 | 0.375 | 0.750 | 2.310 | 0.375 | 1 | 429871 | PT-317T | TK-00897 | | WSSP-70000.5-RH | | SPGN-21.52 | 0.500 | 0.875 | 2.660 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | | WSSP-70000.5-LH | SPGN-21.52 | 0.500 | 0.875 | 2.660 | 0.500 | 1 | 429871 | PT-317T | TK-00897 | | WSSP-70000.6-RH | | SPGN-222 | 0.625 | 1.000 | 2.910 | 0.625 | 2 | 423978 | #3-48x3/16SHCS | TK-00850 | | | WSSP-70000.6-LH | SPGN-222 | 0.625 | 1.000 | 2.910 | 0.625 | 2 | 423978 | #3-48x3/16SHCS | TK-00850 | | WSSP-70000.7-RH | | SPGN-222 | 0.75 | 1.000 | 3.030 | 0.750 | 2 | 423978 | #3-48x1/4SHCS | TK-00879 | | | WSSP-70000.7-LH | SPGN-222 | 0.75 | 1.000 | 3.030 | 0.750 | 2 | 423978 | #3-48x1/4SHCS | TK-00879 | | WSSP-70001-RH | | SPGN-322 | 1.000 | 1.250 | 3.280 | 0.750 | 2 | 429706 | SE02-01 | TK-00854 | | | WSSP-70001-LH | SPGN-322 | 1.000 | 1.250 | 3.280 | 0.750 | 2 | 429706 | SE02-01 | TK-00854 | | WSSP-70001.2-RH | | SPGN-322 | 1.250 | 1.750 | 4.030 | 1.000 | 3 | 429706 | SE02-01 | TK-00855 | | | WSSP-70001.2-LH | SPGN-322 | 1.250 | 1.750 | 4.030 | 1.000 | 3 | 429706 | SE02-01 | TK-00855 | | WSSP-70001.5-RH | | SPGN-432 | 1.500 | 1.750 | 4.030 | 1.250 | 3 | 3127-C | #10-32x1/2SHCS | TK-00856 | | | WSSP-70001.5-LH | SPGN-432 | 1.500 | 1.750 | 4.030 | 1.250 | 3 | 3127-C | #10-32x1/2SHCS | TK-00856 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ${\it NOTE:} For information on screw torque settings, please \ refer to the \ chart on page \ M38.$ # **WSSP Inserts** SPGN | | | | Steel | 1 | | tainle
Steel | | | Ir | st
on | | | | t-Resi
per Al | stant
loys | : | Н | arder
Stee | | | | Dimensio | ns (inches) |) | |--------------------------|--------------------------|--------|----------|--------|----------|-----------------|---------|---------|----------|---------------------|-----------|--------|--------|------------------|---------------|-----------|---------|---------------------|-----------|--------------------------|-------|----------|-------------|-------| | Inserts | Part Number | | Р | | | M | | | | (| | | | S | | | | Н | | Part Number | | | | | | | ANSI | GA5036 | 6-915 | G-9120 | G-915 | G-9230 | ∞009-5W | GA5023 | 6-915 | GSN100 [™] | XSYTIN®-1 | 6-915 | G-9230 | ∞009-5W | ®00€-50M | XSYTIN®-1 | ∞00E-9W | _∞ 009-5M | XSYTIN®-1 | ISO | A | L | T | R | | | SPGN-21.52 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SPGN-060208 | 0.250 | 0.250 | 0.093 | 0.031 | | | SPGN-222 | • | | • | A | • | • | • | | • | | • | | • | | • | • | • | | SPGN-060308 | 0.250 | 0.250 | 0.125 | 0.031 | | | SPGN-322 | • | A | • | A | • | • | • | A | • | | • | | • | A | • | • | • | A | SPGN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SPGN-432 | • | A | • | A | • | • | • | | • | | • | | • | | • | • | • | | SPGN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SPGN-433 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SPGN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | CARBIDE COATINGS: MT-CVI | O Coated PVD Coated Unco | ated | | | | | | First (| Choice | • | Second | Choice | • | Alternat | ive 🔺 | | | Gra | ide desc | riptions — pages M 36–37 | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silic NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. # **Maximum RPM** | Cutter Part Number | Max RPM Carbide | Max RPM Ceramic | |--------------------|-----------------|-----------------| | WSSP-70000.3 | 25,000 | 40,000 | | WSSP-70000.5 | 19,000 | 40,000 | |
WSSP-70000.6 | 15,000 | 40,000 | | WSSP-70000.7 | 12,500 | 35,000 | | WSSP-70001 | 9,500 | 26,000 | | WSSP-70001.2 | 7,500 | 21,000 | | WSSP-70001.5 | 6,200 | 16,500 | NOTE: For information on screw torque settings, please refer to the chart on page M38. # **WSAN** # Parallelogram Positive End Mill | Right-Har | id Cutter | Shown | |------------|-----------|-------| | Ctandard (| | mer | | Part N | umber | | Dime | ensions (i | inches) | | | Standa | d Comp | onents | | Optional Com | ponents | |---------------|---------------|-----------------|-------|------------|---------|-------------------|-------------|----------------|--------|-------------------|-----------------|-------------------------|---------| | Right Hand | Left Hand | Gage
Inserts | A | В | С | No. of
Inserts | Anvil | Anvil Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Max. 1/2" D.O.C. Insert | Filler | | WSAN-1-RH | | ACHN-3422 | 0.985 | 0.750 | 3.750 | 2 | ı | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222 | 3972 | | | WSAN-1-LH | ACHN-3422-LH | 0.985 | 0.750 | 3.750 | 2 | - | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222-LH | 3972 | | WSAN-1A-RH | | ACHN-3422 | 0.985 | 1.000 | 4.000 | 2 | - | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222 | 3972 | | | WSAN-1A-LH | ACHN-3422-LH | 0.985 | 1.000 | 4.000 | 2 | - | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222-LH | 3972 | | WSAN-1 1/4-RH | | ACHN-3422 | 1.215 | 1.000 | 4.000 | 2 | - | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222 | 3972 | | | WSAN-1 1/4-LH | ACHN-3422-LH | 1.215 | 1.000 | 4.000 | 2 | - | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00642 | ACHN-3222-LH | 3972 | | WSAN-1 1/2-RH | | ACHN-3422 | 1.465 | 1.000 | 4.000 | 3 | AAP-3224 | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00643 | ACHN-3222 | 3972 | | | WSAN-1 1/2-LH | ACHN-3422-LH | 1.465 | 1.000 | 4.000 | 3 | AAP-3224-LH | #4-40x1/4 FHCS | 410756 | #8-32x9/32 IPBHCS | TK-00713 | ACHN-3222-LH | 3972 | | WSAN-2-RH | _ | ACHN-3422 | 1.965 | 1.250 | 4.000 | 4 | AAP-3224 | #4-40x1/4 FHCS | 410756 | #8-32x3/8 IPBHCS | TK-00644 | ACHN-3222 | 3972 | | | WSAN-2-LH | ACHN-3422-LH | 1.965 | 1.250 | 4.000 | 4 | AAP-3224-LH | #4-40x1/4 FHCS | 410756 | #8-32x3/8 IPBHCS | TK-00821 | ACHN-3222-LH | 3972 | | WSAN-2 1/2-RH | _ | ACHN-3422 | 2.465 | 1.250 | 4.000 | 4 | AAP-3224 | #4-40x1/4 FHCS | 410756 | #8-32x3/8 IPBHCS | TK-00644 | ACHN-3222 | 3972 | | | WSAN-2 1/2-LH | ACHN-3422-LH | 2.465 | 1.250 | 4.000 | 4 | AAP-3224-LH | #4-40x1/4 FHCS | 410756 | #8-32x3/8 IPBHCS | TK-00821 | ACHN-3222-LH | 3972 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. # **WSAN Inserts** **ACHN** | Inserts | Part Number
ANSI | Steel
P | | | Stainless
Steel
M | | | Cast
Iron
K | | | | Heat-Resistant
Super Alloys
S | | | | | Hardened
Steel
H | | | Part Number | Dimensions (inches) | | | | |--------------------------------|--|------------|----------|--------|-------------------------|--------|---------|-------------------|----------|---------|-----------|-------------------------------------|----------|---------|---------------------|-----------|------------------------|---------|-----------|----------------------|---------------------|-------|-------|-------| | | | GA5036 | G-915 | G-9120 | G-915 | G-9230 | ∞009-5W | GA5023 | G-915 | GSN100™ | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | wG-300 [∞] | XSYTIN®-1 | WG-300® | ₀009-5M | XSYTIN®-1 | ISO | т | w | L | R | | | ACHN-3422 | • | A | • | A | • | • | • | A | • | | • | A | • | | • | • | • | A | ACHN-250308 | 0.125 | 0.375 | 1.000 | 0.031 | | | ACHN-3222 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | ACHN-120308 | 0.125 | 0.375 | 0.500 | 0.031 | | | ACHN-3422LH | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | ACHN-250308LH | 0.125 | 0.375 | 1.000 | 0.031 | | | ACHN-3222LH | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | ACHN-120308LH | 0.125 | 0.375 | 0.500 | 0.031 | | CARBIDE COATINGS: MT-CVD Coate | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated First Choice ◆ | | | | | | | | ce 💠 | Seco | nd Cho | ice | Alte | rnative | A | | | Grade | descripti | ions — pages M 36–37 | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. ### **Excelerator®XF** Positive High-Feed Mills ### 1" and 1-1/2" High-Feed End Mill / Square Positive Inserts | | | Insert | | | | Dimensio | ons (inch | es) | | | Standard (| Components | | | | |---|------------------------|----------|-------|-------|-------|----------|-----------|-------|-----|--------|------------|-------------|-----------------|--------------------|--------------------| | | Cutter
Order Number | | A | В | C | D | E | F | G | No. of | Clamp | Clamp Screw | *Tune-Up
Kit | Max RPM
Carbide | Max RPM
Ceramic | | ſ | XFSP-010-EM | SPGN-222 | 1.000 | 1.250 | 3.280 | 0.750 | 0.568 | 0.031 | 10° | 4 | 431402 | PT-542T | TK-01868 | 9,500 | 26,000 | | | XFSP-015-EM | SPGN-322 | 1.500 | 1.720 | 4.000 | 1.000 | 0.822 | 0.052 | 10° | 5 | 313256 | SE02-01 | TK-01905 | 6,200 | 16,500 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. # 2" High-Feed Face Mill / Square Positive Inserts Right-Hand Face Mill Shown | | Insert | | | | Dimensi | ons (inch | es) | | | Standard (| Components | | | | |------------------------|----------|-------|-------|-------|---------|-----------|-------|-----|--------|------------|-------------|-----------------|--------------------|--------------------| | Cutter
Order Number | | A | В | C | D | E | F | G | No. of | Clamp | Clamp Screw | *Tune-Up
Kit | Max RPM
Carbide | Max RPM
Ceramic | | XFSP-020-FM | SPGN-432 | 2.000 | 1.560 | 0.750 | 0.313 | 1.056 | 0.076 | 10° | 5 | 431628 | SE03-72 | TK-02167 | 4,600 | 13,300 | ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. NOTE: For information on screw torque settings, please refer to the chart on page M38. ### **Excelerator XF Inserts** SPGN | Inserts | Part Number | | Steel | | | tainle
Steel
M | | | | nst
on
K | | | | t-Resi
per Al | istant
loys | t | На | arden
Stee
H | | Part Number | | Dimensio | ns (inches) | | |-----------------------|----------------------------|--------|--------------|---|-------|----------------------|---------|---------|----------|----------------|-----------|---------|--------|------------------|----------------|-----------|---------|--------------------|-----------|-------------------------|-------|----------|-------------|-------| | | ANSI | GA5036 | G-915 G-9120 | | G-915 | G-9230 | ∞009-5W | GA5023 | G-915 | GSN100™ | XSYTIN®-1 | G-915 | G-9230 | ∞009-5W | WG-300° | XSYTIN®-1 | ∞00E-5W | ∞009-5W | XSYTIN®-1 | ISO | A | L | T | R | | | SPGN-222 | • | | • | | • | • | • | A | • | | • | | • | A | • | • | • | | SPGN-060308 | 0.250 | 0.250 | 0.125 | 0.031 | | | SPGN-322 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SPGN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SPGN-432 | • | | • | | • | • | • | | • | | • | | • | | • | • | • | | SPGN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | CARBIDE COATINGS: MT- | CVD Coated PVD Coated Unco | ated | | | | | | First C | hoice 4 | S | econd C | hoice (| D A | lternati | ve 🔺 | | | Gra | de descr | iptions — pages M 36–37 | | | | | CERAMIC CLASSIFICATION: Whisker Genanic Phase-Toughened Silicon Nitride Alumina TiC NOTE: For additional nose radii and available edge preps, please contact Greenleaf Tech Team. ### XFNPS ### Nest for CP4 Series | Nest Par | Nest Part Number Right Hand Left Hand | | | | | | | | | |------------|---------------------------------------|--------------|--|--|--|--|--|--|--| | Right Hand | Left Hand | Gage Inserts | | | | | | | | | XFNPS8043R | _ | SPGN-433 | | | | | | | | | _ | XFNPS8043L | SPGN-433 | | | | | | | | ${\it NOTE:} For information on CP4-series nests, please {\it refer}\ to\ the\ chart\ on\ page\ M14.$ ### **Performance Calculations** Starting Speeds and Feeds for Excelerator XF® | Material | Hardness | Insert | Cutting Speed | Target | | nended Feed per Too
Cut (%) of Effective D | | |----------|---------------------|---------|---------------|----------------------------|--------|---|--------| | | | Grades | (SFM) | Chip Thickness
(inches) | 15% | 30% | 45%+ | | | 60-65 HRC | WG-600® | 500 | 0.0015 | 0.0121 | 0.0094 | 0.0087 | | | 50-59 HRC | WG-600® | 800 | 0.002 | 0.0162 | 0.0126 | 0.0116 | | Steel | 40-49 HRC | WG-600® | 1300 | 0.0027 | 0.0218 | 0.017 | 0.0156 | | | 40-49 HRC | GA5036 | 405 | 0.0017 | 0.0137 | 0.0107 | 0.0098 | | | 30-39 HRC | GA5036 | 600 | 0.003 | 0.0242 | 0.0189 | 0.0174 | | | ≤ 30 HRC GA5036 800 | | 800 | 0.0041 | 0.033 | 0.026 | 0.024 | ### DOC vs. Effective Diameter for Excelerator® XF | | XFSP-010-EM | XFSP-015-EM | XFSP-020-EM | | | CP4 Seri | es Face Mills: XF | NPS8043 Nest | | | |-----------------|-------------|-------------|-------------|--------|--------|----------|-------------------|--------------|---------|---------| | Depth of Cut | 1" | 1.5" | 2" | 3" | 4" | 5" | 6" | 8" | 10" | 12" | | 0.01 | 0.6875 | 0.9413 | 1.1832 | 2.8031 | 3.8031 | 4.8031 | 5.8031 | 7.8031 | 9.8031 | 11.8031 | | 0.02 | 0.8014 | 1.0552 | 1.2954 | 2.9170 | 3.9170 | 4.9170 | 5.9170 | 7.9170 | 9.9170 | 11.9170 | | 0.03 | 0.9152 | 1.1690 | 1.4076 | 3.0308 | 4.0308 | 5.0308 | 6.0308 |
8.0308 | 10.0308 | 12.0308 | | 0.04 | Х | 1.2829 | 1.5498 | 3.1447 | 4.1447 | 5.1447 | 6.1447 | 8.1447 | 10.1447 | 12.1447 | | 0.05 | Χ | 1.3968 | 1.6320 | 3.2586 | 4.2586 | 5.2586 | 6.2586 | 8.2586 | 10.2586 | 12.2586 | | 0.06 | Χ | 1.4742 | 1.7441 | 3.3724 | 4.3724 | 5.3724 | 6.3724 | 8.3724 | 10.3724 | 12.3724 | | 0.07 | Χ | Х | 1.8563 | 3.4863 | 4.4863 | 5.4863 | 6.4863 | 8.4863 | 10.4863 | 12.4863 | | 0.08 | Х | Х | 1.9459 | 3.5385 | 4.5385 | 5.5385 | 6.5385 | 8.5385 | 10.5385 | 12.5385 | | DIA OVER INSERT | 1 | 1.5 | 1.9755 | 3.575 | 4.575 | 5.575 | 6.575 | 8.575 | 10.575 | 12.575 | ### Milling Hardened Steel, Cutting Speed (Vc) ### Milling Hardened Steel, Average Chip Thickness (Hm) ### **Ball Nose** | Part N | lumber | | | Dimen | sions (inches) | | Standard | V= 11 1/4. | | | |--------------|-----------------|----------------|-----------|-------|----------------|-------|-----------------|--|--------------------|--------------------| | Short Series | Extended Series | Gage
Insert | A | В | С | D | Insert
Screw | *Tune-Up Kit
Includes All
Standard
Components | Max RPM
Carbide | Max RPM
Ceramic | | SSBN-0375X | _ | GBN-0375 | 0.375 | 0.75 | 4 | 0.625 | SM30-083 | TK-03466 | 40,000 | 40,000 | | _ | SSBN-0375EX | GBN-0375 | 0.375 | 0.75 | 6 | 0.75 | SM30-083 | TK-03466 | 40,000 | 40,000 | | SSBN-0500X | _ | GBN-0500 | 0.5 1.25 | | 4 | 0.625 | SM40-106 | TK-03461 | 40,000 | 40,000 | | _ | SSBN-0500EX | GBN-0500 | 0.5 | 1.25 | 7.5 | 0.75 | SM40-106 | TK-03461 | 40,000 | 40,000 | | SSBN-0625X | _ | GBN-0625 | 0.625 | 1.375 | 5 | 0.625 | SM50-139 | TK-03175 | 40,000 | 40,000 | | _ | SSBN-0625EX | GBN-0625 | 0.625 | 1.375 | 7.5 | 0.75 | SM50-139 | TK-03175 | 40,000 | 40,000 | | SSBN-0750X | _ | GBN-0750 | 0.75 | 1.75 | 5.5 | 0.75 | SM60-167 | TK-04138 | 40,000 | 40,000 | | _ | SSBN-0750EX | GBN-0750 | 0.75 1.75 | | 10 | 1 | SM60-167 | TK-04138 | 40,000 | 40,000 | | SSBN-1000X | _ | GBN-1000 | 1 1.75 | | 6 | 1 | SM70-210 | TK-04142 | 40,000 | 40,000 | | _ | SSBN-1000EX | GBN-1000 | 1 | 1.75 | 11 | 1.25 | SM70-210 | TK-04142 | 40,000 | 40,000 | NOTE: Add L to part number for left-hand cutter. ### **Ball Nose Inserts** U.S. Patent No. 8,177,459 B2 | luccuto | | Steel | S
Steel | | Cast
Iron
K | | | -Resi
er Al | stant
loys | | rden
Steel
H | | | Dimensions (inches) | | |---------|---------------------|-------|------------|-------|-------------------|-----------|-------|----------------|---------------|-------|--------------------|-----------|-------|---------------------|-------| | Inserts | Part Number
ANSI | G-925 | | G-925 | ∞009-5M | XSYTIN®-1 | G-925 | ∞009-5M | XSYTIN®-1 | 6-925 | | XSYTIN®-1 | L | т | D | | | GBN-0375 | • | • | • | A | • | • | A | • | • | • | A | 0.500 | 0.125 | 0.375 | | | GBN-0500 | • | • | • | | • | • | | • | • | • | | 0.670 | 0.188 | 0.500 | | | GBN-0625 | • | • | • | | • | • | | • | • | • | | 0.800 | 0.188 | 0.625 | | | GBN-0750 | • | • | • | | • | • | | • | • | • | | 0.900 | 0.188 | 0.750 | | | GBN-1000 | • | • | • | | • | • | | • | • | • | | 1.230 | 0.188 | 1.000 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC First Choice ◆ Second Choice ● Alternative ▲ Grade descriptions — pages M 36–37 NOTE: For information on screw torque settings, please refer to the chart on page M38. ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ### **Performance Calculations** Starting Speeds and Feeds for Ball Nose | Mayle Makarial | Hardness | Income Consider | Cutting Speed | Toward Chin Thislesson | Recomm
Depth o | nended Feed per To
of Cut to Radius Rati | oth (IPT)
io (Ap/r) | |---------------------|-----------|-----------------|------------------------|--------------------------------|-------------------|---|------------------------| | Work Material | (HRc) | Insert Grades | Cutting Speed
(SFM) | Target Chip Thickness
(in.) | 0-13.4% | 13.4–29.3% | 29.3–50% | | | | G-925 | 500 | 0.0019 | 0.0085 | 0.0049 | 0.0038 | | | 40 HRC | XSYTIN®-1 | 1050 | 0.0031 | 0.0144 | 0.0081 | 0.0062 | | | | WG-600® | 1500 | 0.0022 | 0.0100 | 0.0057 | 0.0044 | | | | G-925 | 350 | 0.0013 | 0.0042 | 0.0024 | 0.0019 | | Steel | 50 HRC | XSYTIN®-1 | 720 | 0.0025 | 0.0114 | 0.0065 | 0.0050 | | | | WG-600® | 1020 | 0.0019 | 0.0085 | 0.0049 | 0.0038 | | | | G-925 | 300 | 0.0006 | 0.0028 | 0.0016 | 0.0013 | | | 60 HRC | XSYTIN®-1 | 430 | 0.0019 | 0.0071 | 0.0041 | 0.0031 | | | | WG-600® | 610 | 0.0013 | 0.0042 | 0.0024 | 0.0019 | | | | G-925 | 275 | 0.0006 | 0.0028 | 0.0016 | 0.0013 | | Tool Steel | 65 HRC | XSYTIN®-1 | 280 | 0.0016 | 0.0071 | 0.0041 | 0.0031 | | | | WG-600® | 400 | 0.0010 | 0.0042 | 0.0024 | 0.0019 | | | | G-925 | 550 | 0.0025 | 0.0114 | 0.0065 | 0.0050 | | | 20-25 HRC | XSYTIN®-1 | 3000 | 0.0025 | 0.0114 | 0.0065 | 0.0050 | | LIDCA | | WG-600® | 3950 | 0.0016 | 0.0071 | 0.0041 | 0.0031 | | HRSA | | G-925 | 350 | 0.0016 | 0.0071 | 0.0041 | 0.0031 | | | 40-45 HRC | XSYTIN®-1 | 2600 | 0.0016 | 0.0071 | 0.0041 | 0.0031 | | | | WG-600® | 3450 | 0.0010 | 0.0042 | 0.0024 | 0.0019 | | | | G-925 | 850 | 0.0034 | 0.0156 | 0.0088 | 0.0067 | | Graphitic Cast Iron | <40 HRC | XSYTIN®-1 | 2300 | 0.0028 | 0.0129 | 0.0073 | 0.0056 | | | | WG-600® | 2950 | 0.0019 | 0.0085 | 0.0049 | 0.0038 | | | | G-925 | 450 | 0.0025 | 0.0114 | 0.0065 | 0.0050 | | Stainless Steel | ≤40 HRC | XSYTIN®-1 | 2400 | 0.0025 | 0.0114 | 0.0065 | 0.0050 | | | | WG-600® | 3480 | 0.0016 | 0.0071 | 0.0041 | 0.0031 | | Titanium 6Al4V | 35-40 HRC | G-925 | 250 | 0.0010 | 0.0042 | 0.0024 | 0.0019 | | Aluminum | | G-925 | 950 | 0.0038 | 0.0174 | 0.0097 | 0.0075 | ^{*} Recommended Feed per Tooth values are for full slotting situations to maintain the target chip thickness value. When 3D/Profile milling, please use the Greenleaf Ball Nose Calculator to determine the appropriate cutting parameters to achieve the target chip thickness listed. For questions regarding applications and additional materials, please contact your local sales and service engineer or the Greenleaf Technical Service department. ### Effective Cutting Diameter | | | | | | Effect | ive Diamet | er D _{eff} (in.) | for a given | Depth of Cu | t | | | | | |--------------------|-------|-------|-------|-------|--------|------------|---------------------------|-------------|-------------|-------|-------|-------|-------|-------| | | DOC | 0.005 | 0.010 | 0.015 | 0.025 | 0.035 | 0.055 | 0.075 | 0.095 | 0.100 | 0.115 | 0.125 | 0.150 | 0.200 | | | 0.375 | 0.086 | 0.121 | 0.147 | 0.187 | 0.218 | 0.265 | 0.300 | 0.326 | 0.320 | 0.346 | 0.354 | 0.367 | _ | | | 0.500 | 0.099 | 0.140 | 0.171 | 0.218 | 0.255 | 0.313 | 0.357 | 0.392 | 0.400 | 0.421 | 0.433 | 0.458 | 0.490 | | Insert
Diameter | 0.625 | 0.111 | 0.157 | 0.191 | 0.245 | 0.287 | 0.354 | 0.406 | 0.449 | 0.458 | 0.484 | 0.500 | 0.534 | 0.583 | | (in.) | 0.750 | 0.122 | 0.172 | 0.210 | 0.269 | 0.316 | 0.391 | 0.450 | 0.499 | 0.510 | 0.540 | 0.559 | 0.600 | 0.663 | | (-110) | 1.000 | 0.141 | 0.199 | 0.243 | 0.312 | 0.368 | 0.456 | 0.527 | 0.586 | 0.600 | 0.638 | 0.661 | 0.714 | 0.800 | Maximum recommended DOC for WG-600° Maximum recommended DOC for G-925 and XSYTIN®-1 ^{**} Maximum recommended depth of cut (DOC) when using XSYTIN-1 & G-925 is 20% of the insert diameter, and 15% of the insert diameter when using WG-600. # **Powermill Milling Cutters** Ideal for heavy-duty cutting in severe interruptions and uneven surfaces. Replaceable components maximize cutter life while providing deep depths of cut. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ### Powermill M430LNP-A 30° Lead, Neg-Pos Right-hand face mill shown | Part N | umber | | | | | Dim | ensions | (inches) | | | Standard Co | mponent | s | | Optional | |------------|---------------|----------------|-------------------|-----------------|----|-------|---------|------------|-------------|--------|-------------|---------|---------------------------------------|-----------------|-----------------| | Right Hand | Left Hand** | Gage
Insert | No. of
Inserts | Wiper
Insert | A | В | C | Keyway | Bolt Circle | Anvil | Wedge Screw | Anvil | ————————————————————————————————————— | *Tune-Up
Kit | †Anvil | | M430LNP04A | | LNP-335R | 6 | LNP-335RW | 4 | 2.250 | 1.500 | 5/8 x 3/8 | - | 412151 | XNS-58 | S-21 | 303414 | TK-00729 | S-2 | | | M430LNP04A-LH | LNP-335L | 6 | LNP-335LW | 4 | 2.250 | 1.500 | 5/8 x 3/8 | - | 412151 | XNS-58 | S-21 | 303414 | TK-00729 | S-2 | | M430LNP06A | | LNP-335R | 8 | LNP-335RW | 6 | 2.250 | 2.000 | 3/4 x 7/16 | - | 412151 | XNS-58 | S-21 | 303414 | TK-00633 | S-2 | | | M430LNP06A-LH | LNP-335L | 8 | LNP-335LW | 6 | 2.250 | 2.000 | 3/4 x 7/16 | - | 412151 | XNS-58 | S-21 | 303414 | TK-00633 | S-2 | | M430LNP08A | | LNP-335R | 10 | LNP-335RW | 8 | 2.750 | 2.500 | 1 x 17/32 | 4 | 412151 | XNS-58 | S-21 | 303414 | TK-00730 | S-2 | | | M430LNP08A-LH | LNP-335L | 10 | LNP-335LW | 8 | 2.750 | 2.500 | 1 x 17/32 | 4 | 412151 | XNS-58 | S-21 | 303414 | TK-00730 | S-2 | | M430LNP10A | | LNP-335R | 12 | LNP-335RW | 10 | 2.750 | 2.500 | 1 x 17/32 | 4, 4-3/4 | 412151 | XNS-58 | S-21 | 303414 | TK-00634 | S-2 | | | M430LNP10A-LH | LNP-335L | 12 | LNP-335LW | 10 | 2.750 | 2.500 | 1 x 17/32 | 4, 4-3/4 | 412151 | XNS-58 | S-21 | 303414 | TK-00634 | S-2 | | M430LNP12A | | LNP-335R | 16 | LNP-335RW | 12 | 2.750 | 2.500 | 1 x 17/32 | 4, 4-3/4, 7 | 412151 | XNS-58 | S-21 | 303414 | TK-00717 | S-2 | | | M430LNP12A-LH |
LNP-335L | 16 | LNP-335LW | 12 | 2.750 | 2.500 | 1 x 17/32 | 4, 4-3/4, 7 | 412151 | XNS-58 | S-21 | 303414 | TK-00717 | S-2 | NOTE: Maximum depth of cut is .500". When using optional insert and anvil, maximum depth of cut is .880" ### **Powermill Inserts** LNF | | | | Steel | | | eel | | | Dimensio | ns (inches) |) | |---|---------------------|----------|--------------------|--------|----------|--------|---|-------|----------|-------------|-------| | Inserts | Part Number
ANSI | GA5036 | G-915 a | 6-9120 | 6-910 | G-9230 | Part Number
ISO | W | Т | L | F | | | LNP-335R | • | A | • | • | • | LNP-335R | 0.312 | 0.375 | 0.750 | 0.100 | | | LNP-335L | • | | • | • | • | LNP-335L | 0.312 | 0.375 | 0.750 | 0.100 | | | LNP-335RW | • | | • | • | • | LNP-335RW | 0.312 | 0.355 | 0.850 | N/A | | | LNP-335LW | • | | • | • | • | LNP-335LW | 0.312 | 0.355 | 0.850 | N/A | | | LNP-34.57R | • | | • | • | • | LNP-34.57R | 0.437 | 0.375 | 1.125 | 0.100 | | | LNP-34.57L | • | | • | • | • | LNP-34.57L | 0.437 | 0.375 | 1.125 | 0.100 | | | LNP-34.57RW | • | | • | • | • | LNP-34.57RW | 0.437 | 0.355 | 1.228 | N/A | | | LNP-34.57LW | • | | • | • | • | LNP-34.57LW | 0.437 | 0.355 | 1.228 | N/A | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated | First Choice ◆ S | econd Cl | noice • | Al | ternativ | • | Grade descriptions — pages M 36–37 | | | | | ### Wiper Inserts (LNP-RW/LW) A wiper insert is designed to be higher above the face of the cutter compared to standard inserts and has a broader wiping flat or radius to effectively wipe out any tool marks produced by the tolerance differences in the standard inserts. Wiper inserts can be used effectively in a single pocket in smaller diameter cutters and in multiples of two or three in larger cutters to produce a superior finish. The grades selected for wiper inserts will generally be harder (higher 'C' classification) to combat the trend toward more rapid wear caused by the increased surface contact. Wiper inserts should only be a used when the required RMS value is very low. Always bear in mind that the majority of finish problems in milling come from lack of rigidity of the set-up, deflection of the part piece or machine spindle, excessive overhangs, and poor cleanliness and assembly practices in the cutter body. Wiper inserts cannot be expected to resolve these problems. NOTE: The Standard and Optional Anvil both use the same Anvil Screw: #10-32 x 1 FHCS. NOTE: For information on screw torque settings, please refer to the chart on page M38. ^{*} Tune-Up Kits include all standard components and necessary wrenches to allow you to completely refurbish cutter. ^{**} Left-Hand cutters are made to order only. # Insert Grade Reference for Milling ### **Insert Grades** #### **Carbide** Greenleaf offers a comprehensive line of carbide inserts ranging from sub-micron C-1 through C-8 classifications in uncoated, MT-CVD coated and PVD coated options. Carbide inserts are available in ANSI standard geometries that support the various milling products that are offered. #### **CVD Coated** #### GA5023 A high-performance grade designed for the turning and milling of various grades of cast iron, GA5023 features an advanced MT-CVD coating specifically developed to withstand the abrasiveness of cast iron in machining. Applications range from roughing to finishing in most grades of cast iron, including gray, nodular, and others. The high wear resistance and toughness of GA5023 enable high-speed machining in a wide range of feed rates. #### **GA5036** A high-speed MT-CVD coated milling grade, GA5036 should be used when milling forged and cast steels and select ductile irons. GA5036 constitutes a unique combination of toughness and heat resistance, making it suitable for heavy and light-duty milling at high cutting speeds. It is a great first choice for all steel milling. #### GA5125 A high-performance MT-CVD coated carbide used primarily for the milling and turning of manganese steel. GA5125 can also be applied in Cr-Mo steels, tool steels, and other alloyed steels in continuous and interrupted turning. GA5125 provides excellent resistance to abrasion, crater wear, thermal shock, deformation, and built-up edge. It performs best when applied at high speeds and moderate feed rates. #### **PVD Coated** #### G-910 A PVD-coated grade for milling high-temp alloys, stainless steel, and low carbon steels, G-910 is a medium-speed grade and should be applied at moderate to high feed rates. #### **PVD Coated** continued #### G-915 A multi-layer PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels, and low-carbon steels. The coating adds heat and abrasion resistance to the tough substrate. G-915 should be used at moderate speeds and moderate to high feeds. It is a versatile grade that performs well in a variety of materials and operations outside its primary application range, making it a great choice for general machining. #### G-9120 This multi-layer PVD-coated carbide grade excels at milling and turning steel castings and forgings. G-9120 was engineered specifically to maximize productivity at moderate to heavy feed rates and high depths of cut, making it ideal for heavy-turning applications in steel. #### G-9230 A PVD-coated grade designed for the machining of heat-resistant alloys, titanium, and hardened and stainless steels. G-9230 works particularly well in stainless steel turning, interrupted turning of HRSA, and interrupted turning of titanium. G-9230 has superior wear resistance and toughness and is excellent for casting and forging scale conditions. #### G-925 A high-performance multi-layer PVD-coated grade, G-925 is specifically designed for turning abrasive and difficult-to-machine materials. Typical applications include turning of HRSA, titanium and other refractory metals, stainless steels, and ductile cast irons. G-925 exhibits excellent resistance to notching and deformation. Apply at moderate to high speeds and moderate feeds. #### G-935 A multi-layer PVD-coated grade for steel milling and turning applications requiring additional resistance to mechanical and thermal shock. The multi-layered PVD coating raises the speed envelope and wear resistance in tough milling, indexable drilling, and interrupted turning applications. #### **Uncoated** #### G-01 Developed for milling heat-resistant alloys, stainless steel, and low-carbon steels at low speeds and moderate to high feeds, G-01 can also be used for turning in the same range of materials with severe interruption or old machinery. #### **G-01M** A tough sub-micron grade, G01M is used for milling and rough turning stainless steels— even when rolling or casting skin is present. The edge strength of G-01M allows the use of sharp edges and high positive rakes in continuous or interrupted cuts. #### **G-02** An excellent general-purpose cast-iron grade, G-02 can be used for milling and turning cast iron at moderately high speeds and medium feeds. G-02 is also a good choice for machining aluminum with positive rakes and light roughing of some heat-resistant alloys and stainless steels. #### G-53 An excellent general-purpose milling grade for steels at moderate speeds and feeds. G-53 has a good combination of toughness and wear resistance for milling, or can be used as an all-around grade for mixed-production applications. #### G-60 Used for the milling of steel, steel castings, and steel forgings. Apply G-60 at moderate speeds and heavy feed rates and depths of cut. G-60 is more wear-resistant than G-50 but is lower in toughness. #### Ceramic Greenleaf is the leader in the development and manufacture of ceramic and coated ceramic inserts. ANSI standard geometries are offered to fit in many of the milling lines offered. #### WG-300[®] A SiC whisker-reinforced Al₂O₃ ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300® the first choice worldwide for grooving and turning difficult materials. #### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted cuts, forging scale removal, and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### WG-600[®] A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600® include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as milling of hardened steels and select stainless steels. WG-600® is particularly well-suited for finish-turning and grooving of heat-resistant super alloys and is unmatched in both turning and milling of steels with a hardness above 60 HRc. #### **GSN100™** An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. #### WG-700™ A SiC whisker-reinforced Al₂O₃ ceramic featuring improved toughness and a unique low-friction coating. WG-700™ is ideal for turning, grooving, and profiling nickel- and cobalt-based super alloys that
other ceramics may struggle in. WG-700™ exhibits exceptional tool life and productivity in next-generation formulations or novel heat treatments of heat-resistant super alloys, and long-reach or thin-walled applications with lower rigidity. M # Screw Torque Settings | Screw Type | Part Number | Screw Torque (in-lbs) | Wrench | | | | | |---------------------|--------------------|-----------------------|--------|--|--|--|--| | Insert Screw | PT-589T | 8 | T7 | | | | | | | 313631 | 8 | T7 | | | | | | | PT-542T | 8 | T7 | | | | | | | PT-559T | 23 | T15 | | | | | | | 312679 | 23 | T15 | | | | | | | PT-546T | 45 | T20 | | | | | | | SM30-083 | 17 | T10+ | | | | | | | SM40-106 | 26 | T15+ | | | | | | | SM50-1139 | 52 | T20 | | | | | | | SM60-167 | 77 | T25 | | | | | | | SM70-210 | 95 | T20 | | | | | | Wedge Screw | 430578 | 85 | 3/16 | | | | | | | 425606 | 85 | 3/16 | | | | | | | XNS-58 | 95 | 5/32 | | | | | | Nest Screw | SE03-02 | 70 | T15 | | | | | | Anvil Screw | #4-40x1/4 FHCS | 9 | 1/16 | | | | | | | #10-32x7/8 FHCS | 60 | 1/8 | | | | | | Clamp Screw | #10-32x1/2 SHCS | 68 | 5/32 | | | | | | | 438919 | 68 | T25 | | | | | | | #3-48x1/4 SHCS | 9 | 5/64 | | | | | | | SE02-01 | 22 | T15 | | | | | | | SE02-04 | 22 | T15 | | | | | | | PT-317T | 15 | T10 | | | | | | | #3-48x3/16 SHCS | 9 | 5/64 | | | | | | | #8-32x9/32 IPBHCCS | 30 | T15 | | | | | | | #8-32x3/8 IPBHCS | 30 | T15 | | | | | | | PT-542T | 8 | T7 | | | | | | | SE03-72 | 70 | T20 | | | | | | Back-Up Plate Screw | #5-40x3/8 FHCS | 13 | 5/64 | | | | | ### **Excelerator® Mills** ### Setup and Operational Procedures - 1. Thoroughly clean all insert pockets. - 2. Install the inserts, making sure that they are properly seated in the pocket, and torque the insert clamp screws to the correct torque as indicated on the body of the Excelerator Milling Cutter. - 3. Use Greenleaf Excelerator Mills only on machines that have adequate shield guards. - 4. Run the Greenleaf Excelerator Mills using cutting parameters as recommended by Greenleaf Tech Team. Contact the Greenleaf Tech Team at: 814-763-2915 or by email: techteam@greenleafcorporation.com - 5. For safety purposes, do not exceed the maximum RPMs etched on the Excelerator Mill. Note: There are two max RPM numbers. One (the lower RPM number) is for using the mill with carbide inserts and the other is for usage with ceramic inserts. # **Ceramic Edge Preparations** | Edge
Prep | Hone | Primary
Land | Primary
Angle | Application | |--------------|--------------|-----------------|------------------|--| | A | .0005001" R. | | | Light hone added to designated lands and chipforms • XSYTIN®-1 — General-purpose milling of HRSA, hardened steel, and maraging steel | | T1 | | .002004" | 20° | XSYTIN®-1 — General-purpose milling of high-hardness HRSA, and hardened steel | | T1A | .0005001" R. | .002004" | 20° | WG-300°/600/700 — Light-medium milling of hardened steel, milling HRSA, general-purpose turning and milling of stainless steel XSYTIN°-1 — Same applications as T1 where the interruption or hardness gradient and size of hard particles are greater – particularly in HRSA forging scale | | T2 | | .006008″ | 20° | Used in the same applications as T1 but at heavier depths of cut and/or heavier feed rates • GSN100™ – General purpose grey, nodular, and CGI cast iron milling • XSYTIN®-1 – General purpose grey, nodular, and CGI cast iron milling | | T2A | .0005001" R. | .006008" | 20° | WG-300°/600/700 — Milling of grey and nodular cast iron, and hardened steel GSN100™ — Same applications as T2 where more edge strength and protection from irregular wear is required XSYTIN®-1 — General-purpose cast iron (including white cast iron, ADI, CGI) milling | ### **Technical Data** ### Selection of Correct Cutter Diameter Select a cutter diameter greater than the workpiece width by a ratio of approximately 1.5 to 1. This will ensure that each insert enters the cut without the frictional, no-chip phase which occurs when attempting to cut the full cutter diameter. Also, the insert leaves the part without reducing the chip down to zero. These benefits can greatly extend the insert life. With smaller, low horsepower machines it will be better to select a smaller cutter and take two passes rather than a large diameter cutter forced to operate at low tooth loads (feed rates) to avoid stalling of the spindle. Choose a cutter diameter approximately 1.5 times the workpiece width. ### Hand of Cutters A right-hand cutter is one which, when viewed from above, rotates clockwise relative to the workpiece. A left-hand cutter is one which, when viewed from above, rotates counterclockwise relative to the workpiece. ### **Lead Angles** The lead angle of a milling cutter is not intended for producing a specific angle on the work. In fact, because of compound angles, a given lead angle will not produce that angle exactly. The purpose of lead angle is to thin the chip while absorbing a given depth of cut over a greater portion of the insert edge. This results in improved tool life and, for a given horsepower, a greater depth potential. For example, 30° lead angle is a good choice for face milling in general purpose applications. The exception to the previous statement is the 0° lead cutter, sometimes called a 90° cutter, which is designed for milling to square shoulders and producing a 90° corner. ### **Lead Angles and Cutting Forces** The lead angle of a milling cutter has a direct effect upon the cutting forces being presented to the workpiece, cutting tool, and machine. The resultant force is always directly perpendicular to the cutting edge. A lead angle may, therefore, be a major consideration in how we want to direct the forces. For example, in a thin section workpiece, a high lead angle may cause deflection since there is more tendency to "push" the part away from the cutter. On the other hand, a 0° lead cutter has more deflective force on the machine spindle. #### The Round Insert Cutter The exception to the rule in lead angle cutting forces is the round insert. With a round insert, the lead angle is entirely dependent upon the depth of cut. As the depth increases, the lead angle decreases. If cutting half the diameter deep, there is effectively 0° lead angle. In the milling of work hardening materials such as Inconel, and using a round insert cutter, there will be a direct relationship between depth of cut and speed of development of notch wear. The shallower the cut, the slower the notch wear. #### Pitch The pitch of a milling cutter refers to the numbers of inserts placed into a given diameter. Cutters for cast iron are often closer pitch to allow the maximum number of teeth to be engaged at one time for smoother cutting, and because cast iron does not need large gullet for the discontinuous chips produced. For general use, choose a fairly coarse pitch. A guide would be diameter plus 2, i.e., a 6" cutter with 8 inserts, etc. ### Negative Versus Positive Geometry In an indexable cutter, the negative insert is the only one which permits the insert to be turned over and used on both sides. It is the most economical style. Also, it is the strongest insert because all edges are 90° to the faces. On the minus side, the negative rake tool produces higher cutting forces when compared to the positive rake. In general, use negative rakes for cast iron, interrupted cuts, and on rigid high horsepower machining for steels. Use positive rakes for aluminum, titanium, copper, most stainless steels, thin or easily deflected parts, steels, and nickel alloys. There are many milling cutters with a combination of positive and negative rakes often called shear-angle design. These cutters offer some of both worlds, although inserts are essentially like positive inserts and cannot be turned over. Shear angle cutters do provide continuous chip ejection since the axial rake behaves much like a helix in a flute and takes the chip up and away from the finished surface. These cutters work well in heavy duty operations with wide widths of cut—especially if combined with a 30° lead angle. ### Depth of Cut It is a good general rule not to allow depth of cut to exceed 2/3 of the cutting edge length. Remember that in lead angle cutters the cutting edge length in use is not the same as the depth of cut. ### Up Milling and Down Milling This refers to direction of rotation relative to the feed. With a modern machine in good condition, down milling will give the best results. This is because the thickest section of the chip is against the insert to avoid welding, and pressure is progressively relieved towards the finished surface. In up milling, friction and pressure build up before the chip starts to form, causing premature edge wear. It should be in rare cases that up milling is needed. This could be, for example, on an older machine with backlash in the table feed. #### **Cutter Positioning** Central positioning of the cutter can give rise to vibration if any spindle play is present. This is because of an alternating radial force pushing against the spindle. Placing the cutter off center will always be a better situation to avoid chatter and vibration and also to improve tool life. When moving off center, the path of cut is longer since each insert now sweeps a longer arc with each revolution. This may have a measureable impact on tool life, and cutting temperature will tend to increase. Seek a happy medium by moving off center in small increments until vibration is controlled. #### Surface Finish In a milling cutter the finish is produced by the highest insert. Since variations exist in the body and the inserts, it is inevitable that some inserts will be higher than others. If the
inserts have small corner radii, for example, the highest insert will cut the track and this will determine the finish. For this reason, most inserts designed especially for milling, use flats on the insert rather than a radius. In this way, the highest insert produces a wiping effect removing the variances of the other inserts and leaving a much improved finish. "Wiper" inserts installed in a few stations can be used for this purpose as well as "finishing" inserts which are available for certain cutters in the Greenleaf line. ### The 4" Reference for Speed Calculations Recommended cutting speeds are usually given in surface feet per minute (SFM). Sometimes a problem exists in converting SFM to the correct RPM (revolutions per minute) for a given cutter diameter. A very easy way to make a quick approximate calculation is to use a 4" cutter as a base of reference. Since a 4" cutter has a circumference of approximately 12" or 1 foot $$\frac{(\pi \times D'')}{12} = Cft$$ the correct RPM for a 4" cutter is the same as required speed in SFM, i.e, 100 RPM = 100 SFM. This makes it easy to make a mental calculation for most popular cutter diameters For Example: An 8" cutter has 2x the circumference. Therefore, 100 RPM=200 SFM. A 2" cutter has half the circumference. Therefore, 100 RPM=50 SFM and so forth. If you want to make an accurate calculation, the formula is: $$SFM = \frac{(\pi x d x RPM)}{12}$$ Speed rate recommendations are based upon the material to be machined and the cutting tool material which will be used, i.e., carbide, coated carbide, ceramic, silicon nitride, etc. M ### Feed Rate Calculation One problem encountered in milling cutter feed rate considerations is that while most milling cutter manufacturers make recommendations in load per tooth or feed per tooth, the machine is calibrated in inches per minute. It is, therefore, necessary to do a little simple math to get the answers required. In turning, these problems do not exist since only one insert is involved, and the machine is calibrated in feed per revolution. Feed per revolution is the same as feed per tooth when there is only one insert, so we simply plug in the recommended feed. With a milling cutter, the feed per tooth is controlled by three factors. These are: - 1. The feed rate or table advance in inches per minute. - 2. The spindle speed in revolutions per minute. - 3. The number of inserts in the milling cutter. We must make a calculation in order to find out the really critical information needed, i.e., what is the feed per tooth or how much work are we asking each insert to perform? Too little work is more often a problem than too much. If the feed per tooth is very small, let us say less than .003", then abrasive wear is accelerated. No real chip is produced to take away the heat. On the other hand, if high feed rates are used and the cutter has many teeth, then horsepower available may be insufficient. This is an important consideration in selecting a cutter, specially larger diameter cutters with fine pitch. Here are the equations you will need to make your calculations: T = Number of teeth FPT = Feed per tooth IPM = Inches per minute RPM = Revolutions per minute $\pi = 3.1416$ $$\mbox{Feed per tooth} = \frac{\mbox{IPM}}{\mbox{T x RPM}}$$ Feed per revolution = $$\frac{IPM}{RPM}$$ Inches per minute = $FPT \times T \times RPM$ Revolutions per minute = $$\frac{12 \text{ x SFM}}{\pi \text{ x d}}$$ These calculations can also be readily made using the Greenleaf milling calculator available free of charge upon request from your local representative or directly from Greenleaf Corporation (800-458-1850). This calculator also displays horsepower needed at the spindle for a given cut. This takes into account width and depth as well as speed and feed for a given cutter together with the machinability of the material to be machined, often referred to as the "K" factor. It is a good starting point to know that a mild steel (150BHN) requires about 1 HP per cubic inch of material to be removed per minute. The formula for cubic inches removed is: Cu. ins. = D x W x IPM Depth = .060 Width = 6 inches IPM = 22 inches per minute .060 x 6 x 22 = 7.92 cubic inches per minute (or) Approximately 8HP needed for steel 150 BHN For any other material we can divide our answer by the "K" factor which is a machinability rating relative to 150BHN steel. #### "K" Factors | <u>Material</u> | <u>"K" Factor</u> | |---------------------------|-------------------| | Aluminum | 4.00 | | Brass—soft | 3.00 | | Brass—hard | 2.00 | | Bronze-hard | 1.40 | | Cast iron to 200 BHN | 1.75 | | Cast iron to over 200 BHN | 1.20 | | Malleable iron | 1.50 | | Steel—100 BHN | 1.40 | | Steel—150 BHN | 1.00 | | Steel—200 BHN | 0.85 | | Steel—250 BHN | 0.83 | | Steel-300 BHN | 0.80 | | Steel-400 BHN | 0.65 | HPc = Horsepower needed at spindle D = Depth of cut W = Width of cut IPM = Inches per minute feed rate K = K Factor $$HPc = \frac{D \times W \times IPM}{K}$$ M ### Angle of Entry In face milling operations, the angle of entry can have a significant impact upon insert performance. A positive angle of entry can cause breakage or chipping, especially when using positive inserts. Positive angle of entry - 1. When the angle of entry (E1) is less than 90°, the initial impact occurs at a position behind the point of the tool. The insert has a greater section and is stronger here and better able to withstand the impacts. - 2. When the angle of entry (E2) is greater than 90°, the initial impact between the insert and the part piece occurs at the point of the tool, which, especially in a positive rake milling cutter, is the weakest section of the insert. This can lead to insert failure. ### Entering and Exiting the Cut The angle of entry is always adverse as the cut commences. In the illustration, we can see that as the cutter travels through zone A, the angle of entry is changing. It starts out positive as the inserts first start to cut. As the cut progresses, it becomes less and less positive and eventually negative. With a CNC machine, it is a worthwhile exercise to slow down the feed rate in zone A, especially with positive rake tools and hard to cut materials. As the cutter starts to break through at the end of the cut, another problem area is created in zone C. At this point, the cutter breaks through in the center, leaving two islands of material. Changes of entry angle occur which can result in insert problems. As in entry into the part, a reduction of feed rate can help alleviate chipping or breakage problems if they arise. ### Interruptions Milling is by definition an interrupted operation. In addition, as the cutter crosses voids in the part, changes of entry angle occur. This situation is usually too complex to define in absolute terms relative to a targeted solution. Recognizing this in interrupted parts, try to include some of the following features in the set-up to reduce impact: - 1. Negative or negative/positive geometry - 2. Use a lead-angle cutter (30° or 45°) if possible - 3. Use an impact-resistant carbide grade - 4. Use a cutter with medium or fine pitch - 5. Keep the load per tooth on the low end. # A Milling Cutter is a Series of Single-Point Tools It is easy to lose sight of the fact that a milling cutter is nothing more than a series of single-point tools clamped into a rotating holder. If you always keep this in mind, you will be constantly reminded that what is most important to know is what is happening to each tool or insert. The feed rate in inches per minute of machine table travel does not tell you anything important unless or until you calculate the feed per tooth. You cannot calculate the feed per tooth until you know the speed in revolutions per minute and how many teeth are in the cutter. Therefore, it should become second nature to ask, know, and consider the three "golden" variables: - 1. How many inserts? - 2. How many RPM? - 3. What feed in inches per minute? Use this formula to find feed per tooth: $$FPT = \frac{IPM}{No. \text{ of Teeth x RPM}}$$ Once you know the feed per tooth, as a very broad general guide, try to keep the feed above .003" per tooth and remember that horsepower limitations usually come into play long before most cutters reach the upper limit. Some heavy-duty cutters can be used as high as .030" or more per tooth, but this will need a machine in the 50+ horsepower class — and a larger cutter could well use over 100 horsepower! ### For Additional Information about Milling with Ceramics For additional information about milling with ceramics, go to the Application and Technical Information (ATI) section of the catalog. M # **Turning and Boring** | Carbide Inserts | TB 02-40 | |---|------------| | Ceramic Inserts | TB 41-60 | | Industry-Standard Toolholders for Carbide Inserts | TB 61-82 | | Quick-Change Toolholders | TB 83-85 | | Toolholders for Ceramic Inserts | TB 86-107 | | Industry-Standard Boring Bars for Carbide Inserts | TB 108-123 | | Boring Bars for Ceramic Inserts | TB 124-137 | ### **Advanced Carbide Inserts** Greenleaf offers a comprehensive line of carbide inserts in grades for all materials. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. ### **Insert Grades** #### **Carbide** Greenleaf offers a comprehensive line of carbide inserts in grades ranging from sub-micron C-1 through C-8 classifications. An industry pioneer in coated carbide, Greenleaf offers a variety of uncoated, MT-CVD coated and PVD-coated grades. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. #### **CVD Coated** **G5125+** A tough, Co-enriched, CVD-coated grade that is ideally suited for the roughing and semifinishing of steels in turning. Intended applications range from clean and continuous to heavily nterrupted cuts in steels of various hardness
and composition, at medium to high speeds and moderate feed rates. **GA5023** A high-performance grade designed for the turning and milling of various grades of cast iron, GA5023 features an advanced MT-CVD coating specifically developed to withstand the abrasiveness of cast iron in machining. Applications range from roughing to finishing in most grades of cast iron, including gray, nodular, and others. The high wear resistance and toughness of GA5023 enable high-speed machining in a wide range of feed rates. **GA5025** A high-speed MT-CVD coated grade developed primarily for turning, GA5025 excels in light roughing and finishing applications of carbon and alloy steels, including select stainless steels. GA5025 is preferred when tool life and wear resistance are essential in steel turning. **GA5026** A high-performance grade specifically developed for finish-turning in nickel- and cobalt-based super-alloys, stainless steels, hardened steels, and refractory metals. The advanced MT-CVD coating over a micro-grain substrate offers outstanding wear resistance while maintaining exceptional resistance to notching and deformation common in turning of high-strength materials. GA5026 is best applied at high speeds and low feed rates. #### **CVD Coated** continued **GA5035** A high-performance MT-CVD coated grade for turning all types of steels, GA5035 can be used for heavy roughing to finish-turning applications requiring resistance to heat deformation, thermal shock from interrupted cuts, and abrasion. GA5035 should be applied at high speeds and a moderate range of feeds. GA5035 is the primary choice for steel turning. **GA5125** A high-performance MT-CVD coated carbide used primarily for the milling and turning of manganese steel. GA5125 can also be applied in Cr-Mo steels, tool steels, and other alloyed steels in continuous and interrupted turning. GA5125 provides excellent resistance to abrasion, crater wear, thermal shock, deformation, and built-up edge. It performs best when applied at high speeds and moderate feed rates. **G-5135** A coarse-grain MT-CVD coated carbide, G-5135 is ideal for rough steel turning operations, including scale and moderate-to-heavy interruptions, as well as select steel milling applications. G-5135 is also applicable in the roughing of cast irons and stainless steels. Apply at moderate speeds and high feed rates. #### **PVD Coated** **G-915** A multi-layer PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels, and low-carbon steels. The coating adds heat and abrasion resistance to the tough substrate. G-915 should be used at moderate speeds and moderate to high feeds. It is a versatile grade that performs well in a variety of materials and operations outside its primary application range, making it a great choice for general machining. #### **PVD Coated** continued **G-9120** This multi-layer PVD-coated carbide grade excels at milling and turning steel castings and forgings. G-9120 was engineered specifically to maximize productivity at moderate to heavy feed rates and high depths of cut, making it ideal for heavy-turning applications in steel. **G-920** A PVD-coated grade for light-to-medium turning of heat-resistant alloys and some stainless steels. It is also an excellent grade for aluminum and refractory metals. Given its resistance to deformation and notching, G-920 should be applied at higher speeds and is well-suited for grooving and finishturning of HRSA. **G-9230** A PVD-coated grade designed for the machining of heat-resistant alloys, titanium, and hardened and stainless steels. G-9230 works particularly well in stainless steel turning, interrupted turning of HRSA, and interrupted turning of titanium. G-9230 has superior wear resistance and toughness and is excellent for casting and forging scale conditions. **G-925** A high-performance multi-layer PVD-coated grade, G-925 is specifically designed for turning abrasive and difficult-to-machine materials. Typical applications include turning of HRSA, titanium and other refractory metals, stainless steels, and ductile cast irons. G-925 exhibits excellent resistance to notching and deformation. Apply at moderate to high speeds and moderate feeds. **G-9610** A PVD-coated grade, G-9610 is designed for turning titanium-based alloys. The high-tech, wear-resistant, chemically stable, and very smooth and lubricious coating protects the heat-resistant, sub-micron substrate and allows for higher speeds and extended tool life in continuous cuts in non-ferrous alloys. # Uncoated **G-10** Used for roughing all cast irons in severe conditions, including broaching. The edge strength of G-10 makes it a great choice for roughing Ni-, Co-, and Ti-based alloys with positive rakes, and any machining of non-ferrous materials when toughness is of prime importance. Apply at moderate speeds and feeds. **G-02** An excellent general-purpose cast-iron grade, G-02 can be used for milling and turning cast iron at moderately high speeds and medium feeds. G-02 is also a good choice for machining aluminum with positive rakes and light roughing of some heat-resistant alloys and stainless steels. **G-20M** A sub-micron C-2 carbide grade suited for use in light-to-medium turning of titanium and heat-resistant super alloys, G-20M has the strength and edge wear characteristics to resist notching when turning high-strength materials.edge wear characteristics to resist notching when turning high-strength materials. # Insert Grade Reference for Turning # **Chipform Application Range** # A.N.S.I. Identification for Turning and Boring Inserts # I.S.O. Identification for Turning and Boring Inserts ### **Pictorial Index** #### **Negative Inserts** 80° Diamond Chip Control page: 714 Square Chip Control page: T20 **Negative Inserts** continued 80° Trigon Chip Control page: T31 **Negative Inserts** continued 80° Diamond Flat Top page: T 15 Square Flat Top page: T21 80° Trigon Flat Top page: T32 80° Diamond Flat Top page: 7 15 Square Flat Top page: T 22-23 55° Diamond Chip Control page: 716 Triangle Chip Control page: T24-25 55° Diamond Flat Top page: T 17 Triangle Flat Top page: T26 Round Chip Control page: T 18 Triangle Flat Top page: T 27-28 Round Flat Top page: T 19 35° Diamond Chip Control page: 729 Round Flat Top page: T 19 35° Diamond Flat Top page: T30 #### **Positive Inserts** 80° Diamond Positive Flat Top page: 733 Round Positive Flat Top page: T33 Round Chip Control page: T34 Round Chip Control page: T34 Square Positive Flat Top page: T35 Triangle Positive Flat Top page: T 36-37 Triangle Positive Flat Top page: T38 80° Trigon Chip Control: Screw-On page: 739 #### **Radius Forming Insert** SNMA-IR Insert and Toolholder page: T40 #### **V-Bottom Round Inserts** RCGN Positive: Carbide page: GP 14 RPGN Positive: Ceramic page: GP 15 RCGR/RPGR Positive Chipform V-Bottom page: GP 16 RCGT/RPGT Positive Chipform V-Bottom page: GP 17 # **80° Diamond Inserts** Negative Chip Control (CNGG-CNMG-CNMM) | | | | | ! | Stee | I | | | | ainle
Steel | | | Cast
Iron | | Hea | at-Re
uper | sista
Alloy | nt
/s | | Ti | taniı | ım | K — | Dimensions (inches) | | | | | | | |---------------------|----------------------------|---------------------|----------|--------|----------|----------|--------|----------|----------|----------------|---------|-------|--------------|-----------|-------|---------------|----------------|----------|----------|----------|----------|----------|--------------------|---------------------|-------|-------|-------|-------|--|--| | | | | | | P | | | | | M | | | K | _ | | | | | | | S | | | | | | | | | | | | Shape:
80° Diamond | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | 6-925 | G-9610 | 6-10 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | | | TurboForm® | CNGG-430.3-TF | | | | | | • | A | • | • | | | • | • | • | A | | | • | • | | CNGG-120401.3-TF | 0.500 | 0.507 | 0.187 | 0.203 | 0.005 | | | | 9 | | CNGG-430.6-TF | | | | | | • | | • | • | | | • | • | • | | | | • | • | | CNGG-120402.6-TF | 0.500 | 0.507 | 0.187 | 0.203 | 0.010 | | | | SHIN | | CNGG-431-TF | | | | | | • | A | • | • | | | • | • | • | A | | | • | • | | CNGG-120404-TF | 0.500 | 0.507 | 0.187 | 0.203 | 0.015 | | | | FINI | 700/ | CNGG-432-TF | | | | | | • | | | • | | | • | • | • | lack | | | • | • | | CNGG-120408-TF | 0.500 | 0.507 | 0.187 | 0.203 | 0.031 | | | | NOI | | CNGG-433-TF | | | | | | • | | • | • | | | • | • | • | ▲ | | | • | • | | CNGG-120412-TF | 0.500 | 0.507 | 0.187 | 0.203 | 0.047 | | | | PRECISION FINISHING | FF2 | CNMG-431-FF2 | A | • | | • | | • | A | • | • | | • | • | • | • | ▲ | | | • | • | | CNMG-120404-FF2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.015 | | | | | | CNMG-432-FF2 | A | • | | • | | • | A | | • | | • | • | • | | ▲ | | | • | ♦ | A | CNMG-120408-FF2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.031 | | | | G | 1-05/ | CNMG-433-FF2 | A | • | | • | | • | A | | • | | • | • | • | | ▲ | | | • | • | A | CNMG-120412-FF2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.047 | | | | FINISHING | | CNMG-434-FF2 | A | • | | • | | • | A | | • | | ♦ | • | • | | ▲ | | | • | • | | CNMG-120416-FF2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.062 | | | | FINIS | Jamily Smile | CNMG-542-FF | ▲ | • | | • | | • | A | | • | | • | • | • | | ▲ | | | • | • | A | CNMG-160608-FF | 0.625 | 0.635 | 0.250 | 0.250 | 0.031 | | | | | | CNMG-543-FF | ▲ | • | | • | | • | A | | • | | • | • | • | | | | | • | • | | CNMG-160612-FF | 0.625 | 0.635 | 0.250 | 0.250 | 0.047 | | | | | | CNMG-643-FF | A | • | | • | | • | A | | • | | • | • | • | | A | | | • | • | A | CNMG-190612-FF | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | |
 | GP2 | CNMG-432-GP2 | • | • | A | A | | • | A | | • | | • | • | • | | A | | | A | • | • | CNMG-120408-GP2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.031 | | | | | | CNMG-433-GP2 | • | • | | | | • | | | • | | • | • | • | | | | | | • | • | CNMG-120412-GP2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.047 | | | | GENERAL PURPOSE | (Partition of) | CNMG-434-GP2 | • | • | | | | • | | | • | | • | • | • | | | | | | • | • | CNMG-120416-GP2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.062 | | | | PUR | | CNMG-542-GP2 | • | • | | | | | | | • | • | • | | • | | lack | | • | lack | • | • | CNMG-160608-GP2 | 0.625 | 0.635 | 0.250 | 0.250 | 0.031 | | | | RAL | No Atmites | CNMG-543-GP2 | • | • | | A | | | A | | • | • | • | | • | | ▲ | | • | ▲ | • | • | CNMG-160612-GP2 | 0.625 | 0.635 | 0.250 | 0.250 | 0.047 | | | | SENE | | CNMG-643-GP | • | • | | | | | | | • | • | • | | • | | lack | | | ▲ | • | • | CNMG-190612-GP | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | MR2 | CNMG-432-MR2 | | • | | | • | | A | | • | • | • | | • | | A | | • | • | | • | CNMG-120408-MR2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.031 | | | | G | | CNMG-433-MR2 | | • | | | • | | | | • | • | • | | • | | A | | • | • | | • | CNMG-120412-MR2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.047 | | | | HIS | Trust brest | CNMG-434-MR2 | | • | | | • | | | | • | • | • | | • | | | | • | • | | • | CNMG-120416-MR2 | 0.500 | 0.507 | 0.187 | 0.203 | 0.062 | | | | ROUC | | CNMG-542-MR2 | | • | | | • | | | | • | • | • | | • | | | | | | | • | CNMG-160608-MR2 | 0.625 | 0.635 | 0.250 | 0.250 | 0.031 | | | | W | | CNMG-543-MR2 | | • | A | A | • | | A | | • | • | • | | • | | lack | | • | • | A | • | CNMG-160612-MR2 | 0.625 | 0.635 | 0.250 | 0.250 | 0.047 | | | | MEDIUM ROUGHING | | CNMG-642-MR | | • | | | • | | A | | • | • | • | | • | | ▲ | | | • | | ♦ | CNMG-190608-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.031 | | | | ~ | | CNMG-643-MR | | • | A | | • | | A | | • | • | • | | • | | ▲ | | • | • | A | • | CNMG-190612-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | | | | | CNMG-644-MR | | • | | | • | | A | | • | • | • | | • | | ▲ | | | • | | ♦ | CNMG-190616-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.062 | | | | | HR — single sided | CNMM-643-HR | | • | | A | • | | A | | • | • | • | | • | | | | • | | | | CNMM-190612-HR | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | | | 9 | | CNMM-866-HR | | • | | | • | | A | | | • | • | | • | | | | | | | | CNMM-250924-HR | 1.000 | 1.015 | 0.375 | 0.359 | 0.094 | | | | HEAVY ROUGHING | CARB | DE COATINGS: MT-CVD Coated | PVD Coated Uncoated | | | | | F | irst Cho | ice 💠 | Sec | ond Cho | ice | Alt | ternative | e 🔺 | | | Gra | de desci | ription. | s — pa | ges T 4 | | | | | | | | | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ ### 80° Diamond Inserts Negative Flat Top (CNMA) | | | Ire | ast
on
K | | Dimensions (inches) | | | | | | | | |---------------------------------|------------------------------------|--------|----------------|---|---------------------|-------|-------|-------|-------|--|--|--| | Shape:
80° Diamond | Part Number
ANSI | GA5023 | G-02 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | | | | CNMA-431 | • | | CNMA-120404 | 0.500 | 0.507 | 0.187 | 0.203 | 0.015 | | | | | | CNMA-432 | • | | CNMA-120408 | 0.500 | 0.507 | 0.187 | 0.203 | 0.031 | | | | | | CNMA-433 | • | | CNMA-120412 | 0.500 | 0.507 | 0.187 | 0.203 | 0.047 | | | | | | CNMA-434 | • | | CNMA-120416 | 0.500 | 0.507 | 0.187 | 0.203 | 0.062 | | | | | | CNMA-542 | • | | CNMA-160608 | 0.625 | 0.635 | 0.250 | 0.250 | 0.031 | | | | | | CNMA-543 | • | | CNMA-160612 | 0.625 | 0.635 | 0.250 | 0.250 | 0.047 | | | | | | CNMA-642 | • | | CNMA-190608 | 0.750 | 0.761 | 0.250 | 0.312 | 0.031 | | | | | | CNMA-643 | • | | CNMA-190612 | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | | | | | CNMA-644 | • | | CNMA-190616 | 0.750 | 0.761 | 0.250 | 0.312 | 0.062 | | | | | | CNMA-866 | • | | CNMA-250924 | 1.000 | 1.015 | 0.375 | 0.359 | 0.094 | | | | | CARBIDE COATINGS: MT-CVD Coated | PVD Coated Uncoated First Choice ◆ | Seco | nd Cho | ce ● Alternative ▲ Grade descriptions — pages T 4 | | | | | | | | | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ### 80° Diamond Inserts Negative Flat Top (CNGN) | | | Ire | st
on | | | Dimensio | ns (inches | 5) | |-----------------------|---------------------|--------|----------|--------------------|-------------------|----------|------------|-------| | Shape:
80° Diamond | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | L | Т | R | | | CNGN-422 | • | | CNGN-120308 | 0.500 | 0.507 | 0.125 | 0.031 | | | CNGN-432 | • | | CNGN-120408 | 0.500 | 0.507 | 0.187 | 0.031 | | | CNGN-632 | • | A | CNGN-190408 | 0.750 | 0.761 | 0.187 | 0.031 | | | CNGN-633 | • | | CNGN-190412 | 0.750 | 0.761 | 0.187 | 0.047 | | | CNGN-634 | • | | CNGN-190416 | 0.750 | 0.761 | 0.187 | 0.062 | | | CNGN-643 | • | | CNGN-190612 | 0.750 | 0.761 | 0.250 | 0.047 | | | CNGN-644 | • | | CNGN-190616 | 0.750 | 0.761 | 0.250 | 0.062 | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. # 55° Diamond Inserts Negative Chip Control (DNGG-DNMG) | | | | | , | Stee | 1 | | | | | nless | | | Cast | | | at-Re | | | | Tit | taniı | ım | | | | | | | |---------------------|----------------------------|---------------------|----------|----------|----------|---------|--------|----------|----------------|----------|----------|----------------|-------|-----------|---------|-------|-------|------------------|--------|-----------|------------------|------------------|------|--------------------|-------------------|---------|----------|-------|-------| | | | | | | Р | | | | | | eel
M | | | Iron
K | | Sı | ıper | | ıs | | | S | | | Din | nension | ıs (inch | es) | | | | Shape:
55° Diamond | Part Number
ANSI | GA5025 | GA5035 | GA5125 T | G-5125+ | G-9120 | GA5026 | G-5125+ | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | 6-925 | G-9610 | 6-10 | Part Number
ISO | A _{I.C.} | L | т | D | R | | | TurboForm® | DNGG-430.3-TF | | | | | | ▲ | | • | | • | | | ▲ | • | | • | | | • | ♦ | | DNGG-150401.3-TF | 0.500 | 0.610 | 0.187 | 0.203 | 0.005 | | 9/ | | DNGG-430.6-TF | | | | | | | | • | | • | | | lack | • | | • | | | • | ♦ | | DNGG-150402.6-TF | 0.500 | 0.610 | 0.187 | 0.203 | 0.010 | | PRECISION FINISHING | | DNGG-431-TF | | | | | | | | • | | • | | | | • | | • | | | • | ♦ | | DNGG-150404-TF | 0.500 | 0.610 | 0.187 | 0.203 | 0.015 | | FINI | | DNGG-432-TF | | | | | | | | • | | • | | | | • | | • | | | • | ♦ | | DNGG-150408-TF | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | NOI | | DNGG-433-TF | | | | | | | | • | | • | | | | • | | • | | | • | ♦ | | DNGG-150412-TF | 0.500 | 0.610 | 0.187 | 0.203 | 0.047 | | ECIS | | DNGG-542-TF | | | | | | | | • | | • | | | | • | | • | | | • | • | | DNGG-190608-TF | 0.625 | 0.763 | 0.250 | 0.250 | 0.031 | | PR | | DNGG-543-TF | | | | | | | | • | | • | | | | • | | | | | • | • | | DNGG-190612-TF | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | FF2 | DNMG-431-FF2 | ▲ | • | | | | • | | ▲ | | • | | • | • | • | | lack | | | • | • | | DNMG-150404-FF2 | 0.500 | 0.610 | 0.187 | 0.203 | 0.015 | | | | DNMG-432-FF2 | | • | | | | • | | | | • | | • | • | • | | | | | • | • | | DNMG-150408-FF2 | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | 9 | | DNMG-433-FF2 | ▲ | • | | | | • | | ▲ | | • | | • | • | • | | lack | | | • | • | | DNMG-150412-FF2 | 0.500 | 0.610 | 0.187 | 0.203 | 0.047 | | FINISHING | 101 | DNMG-441-FF2 | | • | | | | • | | | | • | | • | • | • | | | | | • | • | | DNMG-150604-FF2 | 0.500 | 0.610 | 0.250 | 0.203 | 0.015 | | FINIS | A. L. L. | DNMG-442-FF2 | A | • | | | | • | | ▲ | | • | | • | • | • | | lack | | | • | ♦ | | DNMG-150608-FF2 | 0.500 | 0.610 | 0.250 | 0.203 | 0.031 | | | | DNMG-443-FF2 | lack | ♦ | | | | • | | | | • | | • | • | • | | lack | | | • | • | | DNMG-150612-FF2 | 0.500 | 0.610 | 0.250 | 0.203 | 0.047 | | | | DNMG-542-FF2 | | • | | | | • | | | | • | | • | • | • | | lack | | | • | • | | DNMG-190608-FF2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.031 | | | | DNMG-543-FF2 | | • | | | | • | | | | * | | • | • | • | | | | | • | ♦ | | DNMG-190612-FF2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | | | GP2 | DNMG-432-GP2 | • | • | ▲ | | | • | | ▲ | | • | | • | • | • | | lack | | | lack | • | • | DNMG-150408-GP2 | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | Ē | | DNMG-433-GP2 | • | • | | | | • | | | • | | • | | • | | | | | | • | • | | DNMG-150412-GP2 | 0.500 | 0.610 | 0.187 | 0.203 | 0.047 | | GENERAL PURPOSE | | DNMG-442-GP2 | • | • | ▲ | | | | | ▲ | | • | • | • | | • | | lack | • | | lack | • | • | DNMG-150608-GP2 | 0.500 | 0.610 | 0.250 | 0.203 | 0.031 | | PUF | | DNMG-443-GP2 | • | • | | | | | | | | • | | • | | • | | | • | | | • | • | DNMG-150612-GP2 | 0.500 | 0.610 | 0.250 | 0.203 | 0.047 | | FRAL | | DNMG-542-GP2 | • | • | | | | | | | | • | • | • | | • | | \blacktriangle | • | | \blacktriangle | • | • | DNMG-190608-GP2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.031 | | GENI | | DNMG-543-GP2 | • | • | | | | | | | | • | • | • | | • | | lack | • | | \blacktriangle | • | • | DNMG-190612-GP2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | MR2 | DNMG-432-MR | | • | A | | • | | A | A | | • | • | • | | • | | A | • | | • | A | • | DNMG-150408-MR | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | 9/ | | DNMG-442-MR | | • | | | • | | | |
 • | | • | | • | | | • | | • | \blacktriangle | • | DNMG-150608-MR | 0.500 | 0.610 | 0.250 | 0.203 | 0.031 | | UHB | | DNMG-542-MR | | • | A | | • | | A | A | | • | • | • | | • | | | • | | • | A | • | DNMG-190608-MR2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.031 | | МЕДІИМ ROUGHING | 9 | DNMG-543-MR2 | | • | | | • | | | | | • | • | • | | • | | | • | | • | A | • | DNMG-190612-MR2 | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | | CARBIDE C | OATINGS: MT-CVD Coated PVE | D Coated Uncoated | | | | | | First Ch | noice 4 | | econd C | hoice (| | Iternat | ive 🛦 | | | Gr | ade de | scription | ns — D | aaes T 4 | 1 | | | | | | | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ## 55° Diamond Inserts Negative Flat Top (DNMA) | | | Ca
Iro | | | | Dime | ensions | (inches) |) | |-----------------------|---------------------|-----------|------|--------------------|-------------------|-------|---------|----------|-------| | Shape:
55° Diamond | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | DNMA-431 | • | A | DNMA-150404 | 0.500 | 0.610 | 0.187 | 0.203 | 0.015 | | | DNMA-432 | • | | DNMA-150408 | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | | DNMA-433 | • | | DNMA-150412 | 0.500 | 0.610 | 0.187 | 0.203 | 0.047 | | 0/ | DNMA-434 | • | | DNMA-150416 | 0.500 | 0.610 | 0.187 | 0.203 | 0.062 | | | DNMA-533 | • | | DNMA-190412 | 0.625 | 0.763 | 0.187 | 0.250 | 0.047 | | | DNMA-542 | • | | DNMA-190608 | 0.625 | 0.763 | 0.250 | 0.250 | 0.031 | | | DNMA-543 | • | | DNMA-190612 | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | | | DNMA-544 | • | | DNMA-190616 | 0.625 | 0.763 | 0.250 | 0.250 | 0.062 | ### **Round Inserts** Negative Chip Control (RNGG-RNMG-RNMM) | | | | | : | Stee | ı | | | | inle
teel | | | Cast
Iron
K | | He
Si | at-Re
uper | Alloy | int
'S | | Ti | tani | um | | Di | imensions (in | ches) | |---------------------|----------------------------|---------------------|----------|--------|----------|---------|---------------|--------|-------|--------------|----------|-------|-------------------|--------|----------|---------------|----------|-----------|-------|----------|--------|-----------|--------------------|-------------------|---------------|-------| | | Shape:
Round | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | 6-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | 6-925 | G-920 | G-9230 | G-9610 | G-20M | G-925 | 6-9610 | 6-10 | Part Number
ISO | A _{I.C.} | Т | D | | | TurboForm® | RNGG-43-TF | | | | | | • | lack | | • | | | • | • | | A | | | • | • | | RNGG-120400-TF | 0.500 | 0.187 | 0.203 | | PRECISION FINISHING | GP2 | RNMG-32-GP | A | • | | | | • | lack | | • | | ♦ | • | • | | A | | | A | • | • | RNMG-090300-GP | 0.375 | 0.125 | 0.150 | | E | | RNMG-33-GP | | • | | | | • | lack | | • | | • | • | • | | | | | | • | * | RNMG-090400-GP | 0.375 | 0.187 | 0.150 | | POS | | RNMG-43-GP | | • | | | | • | ▲ | | • | | • | • | • | | | | | | • | • | RNMG-120400-GP | 0.500 | 0.187 | 0.203 | | GENERAL PURPOSE | MR2 | RNMG-64-MR | • | • | A | | \rightarrow | | ▲ | | • | | • | • | • | | A | | | • | = | • | RNMG-190600-MR | 0.750 | 0.250 | 0.312 | | MEDIUM ROUGHING | | RNMG-86-MR | • | • | | | | | • | | • | | • | • | • | | | | | • | • | • | RNMG-250900-MR | 1.000 | 0.375 | 0.359 | | | HR – single sided | RNMM-84 MR | • | • | | | | • | ▲ | | • | | • | • | • | | | | | | | | RNMM-250600-MR | 1.000 | 0.250 | 0.359 | | HEAVY ROUGHING | DATINGS: MF-CVD Coated PVC | | | | | | | | ice � | | econd Ch | | | | ive 🛦 | | | | | | | pages T 4 | | | | | For additional grades, please contact Greenleaf Technical Service. #### **Round Inserts** Negative Flat Top (RNMA) | | | Ire | nst
on
K | | Di | mensions (in | ches) | |-----------------|---------------------|--------|----------------|--------------------|-------------------|--------------|-------| | Shape:
Round | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | т | D | | | RNMA-32 | • | | RNMA-090300 | 0.375 | 0.125 | 0.150 | | | RNMA-33 | • | | RNMA-090400 | 0.375 | 0.187 | 0.150 | | | RNMA-43 | • | | RNMA-120400 | 0.500 | 0.187 | 0.203 | | | RNMA-54 | • | | RNMA-150600 | 0.625 | 0.250 | 0.250 | | | RNMA-64 | • | | RNMA-190600 | 0.750 | 0.250 | 0.312 | | | RNMA-86 | • | | RNMA-250900 | 1.000 | 0.375 | 0.359 | | | RNMA-106 | • | | RNMA-310900 | 1.250 | 0.375 | 0.500 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated For additional grades, please contact Greenleaf Technical Service. ### **Round Inserts** Negative Flat Top (RNGN) | | | Ir | ast
ron | | Dimensio | ns (inches) | |-------------------------------------|---|--------|------------|--|-------------------|-------------| | Shape:
Round | Part Number
ANSI | GA5023 | G-02 | Part Number
ISO | A _{I.C.} | Т | | | RNGN-32 | • | | RNGN-090300 | 0.375 | 0.125 | | | RNGN-42 | • | | RNGN-120300 | 0.500 | 0.125 | | | RNGN-43 | • | | RNGN-120400 | 0.500 | 0.187 | | | RNGN-45 | • | | RNGN-120700 | 0.500 | 0.312 | | | RNGN-53 | • | | RNGN-150400 | 0.625 | 0.187 | | | RNGN-63 | • | | RNGN-190400 | 0.750 | 0.187 | | | RNGN-84 | • | A | RNGN-250600 | 1.000 | 0.250 | | CARBIDE COATINGS: MT-CVD Coated F | VD Coated Uncoated First Choice ◆ Second Ch | noice | Alte | rnative A Grade descriptions — pages T 4 | • | | For additional grades, please contact Greenleaf Technical Service. **Square Inserts**Negative Chip Control (SNMG-SNMM) | MEDIUM ROUGHING GENERAL PURPOSE FINISHING List | • | Part Number
ANSI
SNMG-322-FF2 | GA5025 | GA5035 | P | | | | St | inless
teel | S | lı | ast
ron | | | t-Re:
per / | | | | Tit | aniu | m | | | Dim | ensions | | | |--|--------------|-------------------------------------|--------|--------|----------|---------|--------|--------|------------------|----------------|------------|---------------|------------|--------|-------|----------------|----------|--------|-------|----------------|--------|----------|--------------------|-------------------|--------|-----------|-----------|-------| | MEDIUM ROUGHING GENERAL PURPOSE FINISHING LIST- SH SI SI SI SI SI SI SI SI SI | uare | ANSI | 5A5025 | 035 | | _ | | | | 84 | | | | | | | | | | | | | | | | | | ١ | | MEDIUM ROUGHING GENERAL PURPOSE FINISHING Suis-ah Suis- | uare | ANSI | 3A5025 | 035 | 5 | _ | | | | M | | | K | | | S | | | | | S | | | | Ullilu | Elizioliz | (ilidies) | ' | | MEDIUM ROUGHING GENERAL PURPOSE FINISHING List | FF2 | SNMG-322-FF2 | | GAS | GA5125 | 6-5125+ | G-9120 | GA5026 | 6-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | L | T | D | R | | MEDIUM ROUGHING GENERAL PURPOSE | 057 | JIIII 322 112 | | • | | | | • | A | | * | , | • | • | • | | A | | | • | • | lack | SNMG-090308-FF2 | 0.375 | 0.375 | 0.125 | 0.150 | 0.031 | | MEDIUM ROUGHING GENERAL PURPOSE | 957 | SNMG-432-FF2 | | • | | | | | lack | | * | 1 | • | • | • | | lack | | | • | • | lack | SNMG-120408-FF2 | 0.500 | 0.500 | 0.187 | 0.203 | 0.031 | | MEDIUM ROUGHING GENERAL PURPOSE | | SNMG-433-FF | | • | | | | • | A | | • | • | • | • | • | | | | | • | • | lack | SNMG-120412-FF | 0.500 | 0.500 | 0.187 | 0.203 | 0.047 | | MEDIUM ROUGHING GENERAL PURPOSE | | SNMG-543-FF | | • | | | | | A | | • | 1 | ◆ | • | • | | | | | • | • | lack | SNMG-150612-FF | 0.625 | 0.625 | 0.250 | 0.250 | 0.047 | | MEDIUM ROUGHING GENERAL PURPOSE | We sime | MEDIUM ROUGHING N HR - sir | GP2 |
SNMG-322-GP | • | • | A | | | • | lack | 1 | • | | • | • | • | | lack | | | lack | • | • | SNMG-090308-GP | 0.375 | 0.375 | 0.125 | 0.150 | 0.031 | | MEDIUM ROUGHING N HR - sir | | SNMG-432-GP2 | • | • | | | | | | - | • | • | • | • | • | \perp | | | | | • | • | SNMG-120408-GP2 | 0.500 | 0.500 | 0.187 | 0.203 | 0.031 | | MEDIUM ROUGHING N HR - sir | THEFT | SNMG-433-GP2 | • | • | A | | | • | \blacktriangle | _ | • | ١. | • | • | • | | lack | | | lack | • | • | SNMG-120412-GP2 | 0.500 | 0.500 | 0.187 | 0.203 | 0.047 | | MEDIUM ROUGHING N HR - sir | | SNMG-434-GP | • | • | | | | | | - | • | <u></u> ' | • | | • | \perp | | | | | | * | SNMG-120416-GP | 0.500 | 0.500 | 0.187 | 0.203 | 0.062 | | MEDIUM ROUGHING N HR - sir | MITTALE I | SNMG-543-GP2 | • | • | A | | | | \blacktriangle | _ | • • | • | • | | • | _ | lack | • | | ▲ | • | • | SNMG-150612-GP2 | 0.625 | 0.625 | 0.250 | 0.250 | 0.047 | | MEDIUM ROUGHING HR - sir | | SNMG-643-GP2 | | • | | | | | | _ | • | - | • | | • | | | | | | | • | SNMG-190612-GP2 | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | MEDIUM ROUGHING HR - sir | | SNMG-644-GP2 | • | • | A | | | | A | | • • | • | • | | • | | lack | • | | \blacksquare | • | • | SNMG-190616-GP2 | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | MEDIUM ROUGHING HR - sir | | | | | | | | | | _ | \perp | \perp | \perp | | | \perp | | | | | | | | | | | | | | HR – sir | MR2 | SNMG-432-MR2 | • | • | A | | | | \blacktriangle | | • • | • | • | | • | | lack | • | | • | ▲ | • | SNMG-120408-MR2 | 0.500 | 0.500 | 0.187 | 0.203 | 0.031 | | HR – sir | | SNMG-442-MR | • | • | | | | | | | • • | • | • | | • | | | | | | | * | SNMG-120608-MR | 0.500 | 0.500 | 0.250 | 0.203 | 0.031 | | HR – sir | | SNMG-543-MR2 | | • | A | | • | | lack | | • • | • | • | | • | | lack | • | | • | ▲ | • | SNMG-150612-MR2 | 0.625 | 0.625 | 0.250 | 0.250 | 0.047 | | HR – sir | | SNMG-643-MR | | • | | | | | | _ | • | • | • | | • | | | | | | | ♦ | SNMG-190612-MR | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | HR – sir | | SNMG-644-MR | | • | A | | • | | \blacktriangle | | • • | • | <u> </u> | | • | | lack | • | | • | ▲ | • | SNMG-190616-MR | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | HR – sir | | SNMG-866-MR | | • | | | | | | - | • • | • | • | | • | | | • | | | ▲ | ♦ | SNMG-250924-MR | 1.000 | 1.000 | 0.375 | 0.359 | 0.094 | | | | | | | | | _ | single sided | SNMM-643-HR | | • | | | • | | A | | | \rightarrow | • | | • | | | | | | | | SNMM-190612-HR | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | 9 | | SNMM-644-HR | | • | | | | | | | | • | • | | • | | | | | | | | SNMM-190616-HR | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | HEAVY ROUGHING | # **Square Inserts**Negative Flat Top (SNMA) | | | lr | ast
on
K | | | Dime | ensions | (inches) | | |---------------------------------|---|--------|----------------|---|-------------------|-------|---------|----------|-------| | Shape:
Square | Part Number
ANSI | GA5023 | G-02 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | | SNMA-321 | • | | SNMA-090304 | 0.375 | 0.375 | 0.125 | 0.150 | 0.015 | | | SNMA-322 | • | | SNMA-090308 | 0.375 | 0.375 | 0.125 | 0.150 | 0.031 | | | SNMA-323 | • | | SNMA-090312 | 0.375 | 0.375 | 0.125 | 0.150 | 0.047 | | | SNMA-431 | • | | SNMA-120404 | 0.500 | 0.500 | 0.187 | 0.203 | 0.015 | | | SNMA-432 | • | | SNMA-120408 | 0.500 | 0.500 | 0.187 | 0.203 | 0.031 | | | SNMA-433 | • | | SNMA-120412 | 0.500 | 0.500 | 0.187 | 0.203 | 0.047 | | | SNMA-434 | • | | SNMA-120416 | 0.500 | 0.500 | 0.187 | 0.203 | 0.062 | | | SNMA-542 | • | | SNMA-150608 | 0.625 | 0.625 | 0.250 | 0.250 | 0.031 | | | SNMA-543 | • | | SNMA-150612 | 0.625 | 0.625 | 0.250 | 0.250 | 0.047 | | | SNMA-544 | • | | SNMA-150616 | 0.625 | 0.625 | 0.250 | 0.250 | 0.062 | | | SNMA-643 | • | | SNMA-190612 | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | | SNMA-644 | • | | SNMA-190616 | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | | SNMA-864 | • | | SNMA-250916 | 1.000 | 1.000 | 0.375 | 0.359 | 0.062 | | | SNMA-866 | • | | SNMA-250924 | 1.000 | 1.000 | 0.375 | 0.359 | 0.094 | | CARBIDE COATINGS: MT-CVD Coated | PVD Coated Uncoated First Choice ◆ Second Cho | ice • | Alten | native Grade descriptions — pages T 4 | | | | | | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ # **Square Inserts**Negative Flat Top (SNGN) | | | Iro | st
on | | | Dimensio | ons (inches | s) | |------------------|---------------------|--------|----------|--------------------|-------------------|----------|-------------|-------| | Shape:
Square | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | L | т | R | | | SNGN-321 | • | | SNGN-090304 | 0.375 | 0.375 | 0.125 | 0.015 | | | SNGN-322 | • | | SNGN-090308 | 0.375 | 0.375 | 0.125 | 0.03 | | | SNGN-422 | • | A | SNGN-120308 | 0.500 | 0.500 | 0.125 | 0.03 | | | SNGN-423 | • | | SNGN-120312 | 0.500 | 0.500 | 0.125 | 0.04 | | | SNGN-430 | • | A | SNGN-120400 | 0.500 | 0.500 | 0.187 | 0.00 | | | SNGN-431 | • | | SNGN-120404 | 0.500 | 0.500 | 0.187 | 0.01 | | | SNGN-432 | • | A | SNGN-120408 | 0.500 | 0.500 | 0.187 | 0.03 | | | SNGN-433 | • | | SNGN-120412 | 0.500 | 0.500 | 0.187 | 0.04 | | | SNGN-434 | • | A | SNGN-120416 | 0.500 | 0.500 | 0.187 | 0.0 | | | SNGN-533 | • | | SNGN-150412 | 0.625 | 0.625 | 0.187 | 0.0 | | | SNGN-534 | • | A | SNGN-150416 | 0.625 | 0.625 | 0.187 | 0.0 | | | SNGN-543 | • | A | SNGN-150612 | 0.625 | 0.625 | 0.250 | 0.0 | | | SNGN-631 | • | A | SNGN-190404 | 0.750 | 0.750 | 0.187 | 0.0 | | | SNGN-632 | • | | SNGN-190408 | 0.750 | 0.750 | 0.187 | 0.0 | | | SNGN-633 | • | A | SNGN-190412 | 0.750 | 0.750 | 0.187 | 0.0 | | | SNGN-634 | • | | SNGN-190416 | 0.750 | 0.750 | 0.187 | 0.0 | | | SNGN-638 | • | A | SNGN-190432 | 0.750 | 0.750 | 0.187 | 0.1 | | | SNGN-643 | • | A | SNGN-190612 | 0.750 | 0.750 | 0.250 | 0.0 | | | SNGN-644 | • | A | SNGN-190616 | 0.750 | 0.750 | 0.250 | 0.0 | | | SNGN-646 | • | | SNGN-190624 | 0.750 | 0.750 | 0.250 | 0.0 | | | SNGN-844 | • | A | SNGN-250616 | 1.000 | 1.000 | 0.250 | 0.00 | | | SNGN-854 | • | | SNGN-250716 | 1.000 | 1.000 | 0.312 | 0.0 | | | SNGN-10412 | • | A | SNGN-310648 | 1.250 | 1.250 | 0.250 | 0.1 | | | SNGN-1066 | • | | SNGN-310924 | 1.250 | 1.250 | 0.375 | 0.0 | | | SNGN-1068 | • | A | SNGN-310932 | 1.250 | 1.250 | 0.375 | 0.1 | | | SNGN-1288 | • | A | SNGN-381232 | 1.500 | 1.500 | 0.500 | 0.1 | # **Square Inserts**Negative Flat Top (SNUN) | | | Ca
Iro | on | | | Dimensio | ns (inche | s) | |------------------|---------------------|-----------|-----------------------------|--------------------|-------------------|----------|-----------|-------| | Shape:
Square | Part Number
ANSI | GA5023 | G-02 | Part Number
ISO | A _{I.C.} | L | т | R | | | SNUN-322 | • | lack | SNUN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SNUN-323 | • | | SNUN-090312 | 0.375 | 0.375 | 0.125 | 0.047 | | | SNUN-422 | • | | SNUN-120308 | 0.500 | 0.500 | 0.125 | 0.031 | | | SNUN-423 | • | | SNUN-120312 | 0.500 | 0.500 | 0.125 | 0.047 | | | SNUN-424 | • | | SNUN-120316 | 0.500 | 0.500 | 0.125 | 0.062 | | | SNUN-432 | • | $\color{red}\blacktriangle$ | SNUN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SNUN-433 | • | | SNUN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SNUN-434 | • | | SNUN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | | SNUN-533 | • | $\color{red}\blacktriangle$ | SNUN-150412 | 0.625 | 0.625 | 0.187 | 0.047 | | | SNUN-632 | • | A | SNUN-190408 | 0.750 | 0.750 | 0.187 | 0.031 | | | SNUN-633 | • | A | SNUN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SNUN-634 | • | | SNUN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SNUN-844 | • | A | SNUN-250616 | 1.000 | 1.000 | 0.250 | 0.062 | | | SNUN-848 | • | | SNUN-250632 | 1.000 | 1.000 | 0.250 | 0.125 | | | SNUN-854 | • | | SNUN-250716 | 1.000 | 1.000 | 0.312 | 0.062 | | | SNUN-1066 | • | | SNUN-310924 | 1.250 | 1.250 | 0.375 | 0.094 | | | SNUN-1068 | • | | SNUN-310932 | 1.250 | 1.250 | 0.375 | 0.125 | | İ | SNUN-1288 | • | | SNUN-381232 | 1.500 | 1.500 | 0.500 | 0.125 | **Triangle Inserts**Negative Chip Control (TNGG-TNMG-TNMM) | | | | | | | | | | | | | | - | | | | ٠. | | | | | | R - | | | | | | |---------------------|----------------------------|---------------------|--------|--------|----------|---------|--------|----------|----------|----------------|----------|-------|--------------|---------|----------|---------------|----------|--------|------------------------|----------|--------|----------|--------------------|-------------------|-------|---------|-----------------|------------| | | | | | | Stee | I | | | | ainle
Steel | | | Cast
Iron | | | at-Re
uper | | | | Tit | aniu | m | | | Dia | | /i.u. alb. a =\ | | | | | | | | Р | | | | | М | | | K | | | | , | | | | S | | | | VIM | ensions | (inches) | | | | Chamas | Doub Nous bou | | | Ė | + | | | | | | | | | | | | | Г | | | | Doub Normalian | | | | | | | | Shape:
Triangle | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | 6-925 | G-920 | G-9230 | G-9610 | G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | TurboForm° | TNGG-330.3-TF | G | G | G | G | G | • | A | • | • | G | 9 | • | • | • | A | G | G | • | • | G | TNGG-160401.3-TF | 0.375 | 0.650 | 0.187 | 0.150 | 0.005 | | 9 | | TNGG-330.6-TF | | | | | | • | | • | • | | | • | • | • | | | | • | • | | TNGG-160402.6-TF | 0.375 | 0.650 | 0.187 | 0.150 | 0.010 | | NHS | | TNGG-331-TF | | | | | | • |
A | • | • | | | • | • | • | | | | • | • | | TNGG-160404-TF | 0.375 | 0.650 | 0.187 | 0.150 | 0.015 | | PRECISION FINISHING | | TNGG-332-TF | | | | | | • | | | • | | | • | • | • | | | | | • | | TNGG-160408-TF | 0.375 | 0.650 | 0.187 | 0.150 | 0.031 | | NO1 | | TNGG-430.3-TF | | | | | | • | A | • | • | | | • | • | • | lack | | | • | • | | TNGG-220401.3-TF | 0.500 | 0.866 | 0.187 | 0.203 | 0.005 | | ECIS | | TNGG-430.6-TF | | | | | | • | A | | • | | | • | • | • | | | | • | • | | TNGG-220402.6-TF | 0.500 | 0.866 | 0.187 | 0.203 | 0.010 | | PR | | TNGG-431-TF | | | | | | • | A | • | • | | | • | • | • | lack | | | • | • | | TNGG-220404-TF | 0.500 | 0.866 | 0.187 | 0.203 | 0.015 | | | | TNGG-432-TF | | | | | | • | | • | • | | | • | • | • | | | | | • | | TNGG-220408-TF | 0.500 | 0.866 | 0.187 | 0.203 | 0.031 | | | FF2 | TNMG-321-FF2 | | • | | | | • | A | | • | | • | • | • | | lack | | | • | • | lack | TNMG-160304-FF2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.015 | | | | TNMG-322-FF2 | | • | | | | • | | | • | | • | • | • | | | | | | • | ▲ | TNMG-160308-FF2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.031 | | | | TNMG-323-FF2 | | • | | | | • | A | | • | | • | • | • | | lack | | | • | • | lack | TNMG-160312-FF2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.047 | | | | TNMG-324-FF2 | | • | | | | • | | | • | | • | • | • | | | | | • | • | | TNMG-160316-FF2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.062 | | | | TNMG-331-FF2 | | • | | | | • | A | | • | | • | • | • | | lack | | | • | • | lack | TNMG-160404-FF2 | 0.375 | 0.650 | 0.187 | 0.150 | 0.015 | | 9/ | | TNMG-332-FF2 | | • | | | | • | | | • | | • | • | • | | | | | • | • | A | TNMG-160408-FF2 | 0.375 | 0.650 | 0.187 | 0.150 | 0.031 | | FINISHING | | TNMG-334-FF2 | | • | | | | • | | | • | | • | • | • | | | | | • | • | lack | TNMG-160416-FF2 | 0.375 | 0.650 | 0.187 | 0.150 | 0.062 | | FIN | | TNMG-431-FF2 | | • | | | | • | | | • | | • | • | • | | | | | | • | | TNMG- 220404-FF2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.015 | | | | TNMG-432-FF2 | | • | | | | • | A | | • | | • | • | • | | | | | • | • | A | TNMG-220408-FF2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.031 | | | | TNMG-433-FF2 | | • | | | | • | | | • | | • | • | • | | | | | • | • | lack | TNMG-220412-FF2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.047 | | | | TNMG-434-FF2 | | • | | | | • | A | | • | | • | • | • | | lack | | | • | • | ▲ | TNMG-220416-FF2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.062 | | | | TNMG-542-FF2 | | • | | | | • | | | • | | • | • | • | | | | | • | • | A | TNMG-270608-FF2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.031 | | | | TNMG-543-FF2 | | • | | | | • | A | | • | | • | • | • | | lack | | | • | • | ▲ | TNMG-270612-FF2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.047 | | | GP2 | TNMG-321-GP2 | • | • | | | | • | | | • | | • | • | • | | | | | | • | * | TNMG-160304-GP2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.015 | | | 5.2 | TNMG-322-GP2 | • | • | | | | • | A | | • | | • | • | • | | lack | | | lack | • | • | TNMG-160308-GP2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.031 | |)SE | | TNMG-323-GP2 | • | • | | | | • | | | • | | • | • | * | | | | | | • | • | TNMG-160312-GP2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.047 | | GENERAL PURPOSE | C | TNMG-324-GP2 | • | • | A | | | • | A | | • | | • | • | ♦ | | lack | | | lack | • | ♦ | TNMG-160316-GP2 | 0.375 | 0.650 | 0.125 | 0.150 | 0.062 | | 11 P | | TNMG-333-GP2 | • | • | A | | | • | | | • | | • | • | • | | | | | | • | ♦ | TNMG-160412-GP2 | 0.375 | 0.650 | 0.187 | 0.150 | 0.047 | | NER/ | (and the same | TNMG-432-GP2 | • | • | A | | | • | A | | • | | • | • | ♦ | | lack | | | lack | • | * | TNMG-220408-GP2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.031 | | GE! | | TNMG-433-GP2 | • | • | A | | | • | A | | • | | • | • | ♦ | | | | | | • | ♦ | TNMG-220412-GP2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.047 | | | | TNMG-434-GP2 | • | • | A | | | • | A | | • | | ♦ | • | • | | | | | lack | • | ♦ | TNMG-220416-GP2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.062 | | | | TNMG-542-GP2 | • | • | | | | • | | | • | | • | • | ♦ | | | | | | • | ♦ | TNMG-270608-GP2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.031 | | CARBIDE (| OATINGS: MT-CVD Coated PVI | O Coated Uncoated | | | | | Fire | st Choic | e 🔷 | Secor | nd Choic | ce • | Alte | rnative | A | | | Grad | le descri _l | ptions - | — page | s T 4 | | | | Conti | nued on r | next page. | **Triangle Inserts**Negative Chip Control (TNGG-TNMG-TNMM) Continued | | | | | | Stee | ı | | | | ainle
Steel | | | Cast
Iron | | | at-Re
uper | | | | Ti | taniı | ım | | | Dime | ensions | (inches) | | |-----------------|--------------------|---------------------|--------|--------|--------|---------|--------|-----------|------------------|----------------|---------|-------|--------------|----------|----------|---------------|--------|--------|----------|---------|------------------|--------|--------------------|-------------------|-------|---------|----------|-------| | | | | | | P | | | | | M | | | K | | | 9 | | | | | S | | | | | | | | | | Shape:
Triangle | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | L | ī | D | R | | | MR2 | TNMG-222-MR2 | | • | | | • | • | | | • | | • | • | • | | | | | • | | • | TNMG-110308-MR2 | 0.250 | 0.433 | 0.125 | 0.093 | 0.031 | | | | TNMG-433-MR2 | | • | | | • | | | | • | | • | • | • | | | | | • | | • | TNMG-220412-MR2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.047 | | ING | | TNMG-434-MR2 | | • | | | • | • | \blacktriangle | | • | | • | • | • | | | | | • | | • | TNMG-220416-MR2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.062 | | MEDIUM ROUGHING | | TNMG-438-MR2 | | • | | | • | | | | • | | • | • | • | | | | | • | | • | TNMG-220432-MR2 | 0.500 | 0.866 | 0.187 | 0.203 | 0.125 | | 1 RO | | TNMG-542-MR2 | | • | | | • | | | | • | • | • | | • | | | • | | • | \blacktriangle | • | TNMG-270608-MR2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.031 | | VNIG | | TNMG-543-MR2 | | • | | | | | | | • | | • | | • | | | | | • | | • | TNMG-270612-MR2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.047 | | ME | | TNMG-544-MR2 | | • | | | • | | | | • | • | • | | • | | | • | | • | \blacktriangle | • | TNMG-270616-MR2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.062 | | | | TNMG-546-MR2 | | • | | | • | | | | • | | • | | • | | | • | | • | ▲ | • | TNMG-270624-MR2 | 0.625 | 1.083 | 0.250 | 0.250 | 0.094 | | | | TNMG-666-MR | | • | | | • | | \blacktriangle | | • | • | • | | • | | | • | | • | ▲ | • | TNMG-330924-MR | 0.750 | 1.299 | 0.375 | 0.312 | 0.094 | | | HR – single sided | TNMM-433-HR | | • | | | • | | | | • | | • | | • | | | • | | • | \blacktriangle | • | TNMM-220412-HR | 0.500 | 0.866 | 0.187 | 0.203 | 0.047 | | | | TNMM-544-HR | | • | | | • | | \blacktriangle | | • | • | • | | • | | lack | • | | • | ▲ | • | TNMM-270616-HR | 0.625 | 1.083 | 0.250 | 0.250 | 0.062 | | HEAVY ROUGHING | O Coated Uncoated | • | | | | | irst Choi | | Seco | nd Choi | ice • | Alt | ernative | A | | | Grad | de desci | iptions | — рад | es T 4 | | | | | ' | | # **Triangle Inserts**Negative Flat Top (TNMA) | | | li li | ast
ron
K | | | Dimei | nsions (i | nches) | | |--------------------|---------------------|--------|-----------------|--------------------|------------------|---------|-----------|--------|-------| | Shape:
Triangle | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C} | L | Т | D | R | | | TNMA-222 | • | A | TNMA-110308 | 0.25 | 0 0.433 | 0.125 | 0.093 | 0.031 | | | TNMA-321 | • | | TNMA-160304 | 0.37 | 5 0.650 | 0.125 | 0.150 | 0.015 | | | TNMA-322 | • | | TNMA-160308 | 0.37 | 5 0.650 | 0.125 | 0.150 | 0.031 | | | TNMA-323 | • | | TNMA-160312 | 0.37 | 5 0.650 | 0.125 | 0.150 | 0.047 | | | TNMA-324 | • | | TNMA-160316 | 0.37 | 5 0.650 | 0.125 | 0.150 | 0.062 | | | TNMA-332 | • | | TNMA-160408 | 0.37 | 5 0.650 | 0.187 | 0.150 | 0.031 | | | TNMA-333 | • | | TNMA-160412 | 0.37 | 5 0.650 | 0.187 | 0.150 | 0.047 | | | TNMA-431 | • | | TNMA-220404 | 0.50 | 0.866 | 0.187 | 0.203 | 0.015 | | | TNMA-432 | • | | TNMA-220408 | 0.50 | 0.866 | 0.187 | 0.203 | 0.031 | | | TNMA-433 | • | | TNMA-220412 | 0.50 | 0.866 | 0.187 | 0.203 | 0.047 | | | TNMA-434 | • | | TNMA-220416 | 0.50 | 0.866 | 0.187 | 0.203 | 0.062 | | | TNMA-542 | • | | TNMA-270608 | 0.62 | 5 1.083 | 0.250 | 0.250 | 0.031 | | | TNMA-543 | • | | TNMA-270612 | 0.62 | 5 1.083 | 0.250 | 0.250 | 0.047 | | | TNMA-544 | • | | TNMA-270616 | 0.62 | 5 1.083 | 0.250 | 0.250 | 0.062 | | | TNMA-548 | • | | TNMA-270632 | 0.62 | 5 1.083 | 0.250 | 0.250 | 0.125 | | | TNMA-556 | • | | TNMA-270724 | 0.62 | 5 1.083 | 0.312 | 0.250 | 0.094 | | | TNMA-566 | • | | TNMA-270924 | 0.62 | 5 1.083 | 0.375 | 0.250 | 0.094 | | | TNMA-642 | • | | TNMA-330608 | 0.75 | 0 1.299 | 0.250 | 0.312 | 0.031 | | | TNMA-643 | • | | TNMA-330612 | 0.75 | 0 1.299 | 0.250 | 0.312 | 0.047 | | | TNMA-644 | • | | TNMA-330616 | 0.75 | 0 1.299 | 0.250 | 0.312 | 0.062 | | | TNMA-664 | • | | TNMA-330916 | 0.75 | 0 1.299 | 0.375 | 0.312 | 0.062 | | | TNMA-666 | • | | TNMA-330924 | 0.75 | 0 1.299 | 0.375 | 0.312 | 0.094 | | | TNMA-668 | • | | TNMA-330932 | 0.75 | 0 1.299 | 0.375 | 0.312 | 0.125 | # **Triangle Inserts**Negative Flat Top (TNGN) | | | Ca
Iro | on | | | | Dimensio | ns (inches | s) | |--------------------|---------------------|-----------|-----------------------------|--------------------|---|-------------------|----------|------------|-------| | Shape:
Triangle | Part Number
ANSI | GA5023 | G-02 | Part Number
ISO | | A _{I.C.} | L | T | R | | | TNGN-222 | • | | TNGN-110308 | (| 0.250 | 0.433 | 0.125 | 0.031 | | | TNGN-223 | • | | TNGN-110312 | (| 0.250 | 0.433 | 0.125 | 0.047 | | | TNGN-320 | • | |
TNGN-160300 | (| 0.375 | 0.650 | 0.125 | 0.005 | | | TNGN-321 | • | | TNGN-160304 | (| 0.375 | 0.650 | 0.125 | 0.01 | | | TNGN-322 | • | | TNGN-160308 | (| 0.375 | 0.650 | 0.125 | 0.03 | | | TNGN-323 | • | $\color{red}\blacktriangle$ | TNGN-160312 | (| 0.375 | 0.650 | 0.125 | 0.04 | | | TNGN-324 | • | lack | TNGN-160316 | (| 0.375 | 0.650 | 0.125 | 0.06 | | | TNGN-331 | • | | TNGN-160404 | (| 0.375 | 0.650 | 0.187 | 0.01 | | | TNGN-332 | • | A | TNGN-160408 | (| 0.375 | 0.650 | 0.187 | 0.03 | | | TNGN-333 | • | \blacktriangle | TNGN-160412 | (| 0.375 | 0.650 | 0.187 | 0.04 | | | TNGN-334 | • | A | TNGN-160416 | (| 0.375 | 0.650 | 0.187 | 0.06 | | | TNGN-431 | • | | TNGN-220404 | (| 0.500 | 0.866 | 0.187 | 0.01 | | | TNGN-432 | • | lack | TNGN-220408 | (| 0.500 | 0.866 | 0.187 | 0.03 | | | TNGN-433 | • | \blacktriangle | TNGN-220412 | (| 0.500 | 0.866 | 0.187 | 0.04 | | | TNGN-434 | • | lack | TNGN-220416 | (| 0.500 | 0.866 | 0.187 | 0.06 | | | TNGN-438 | • | | TNGN-220432 | (| 0.500 | 0.866 | 0.187 | 0.12 | | | TNGN-442 | • | A | TNGN-220608 | (| 0.500 | 0.866 | 0.250 | 0.03 | | | TNGN-443 | • | | TNGN-220612 | (| 0.500 | 0.866 | 0.250 | 0.04 | | | TNGN-444 | • | A | TNGN-220616 | (| 0.500 | 0.866 | 0.250 | 0.06 | | | TNGN-532 | • | lack | TNGN-270408 | (| 0.625 | 1.083 | 0.187 | 0.03 | | | TNGN-538 | • | lack | TNGN-270432 | (| 0.625 | 1.083 | 0.187 | 0.12 | | | TNGN-541 | • | | TNGN-270604 | (| 0.625 | 1.083 | 0.250 | 0.01 | | | TNGN-542 | • | A | TNGN-270608 | (| 0.625 | 1.083 | 0.250 | 0.03 | | | TNGN-543 | • | | TNGN-270612 | (| 0.625 | 1.083 | 0.250 | 0.04 | | | TNGN-544 | • | A | TNGN-270616 | (| 0.625 | 1.083 | 0.250 | 0.06 | | | TNGN-554 | • | | TNGN-270716 | (| 0.625 | 1.083 | 0.312 | 0.06 | | | TNGN-556 | • | lack | TNGN-270724 | (| 0.625 | 1.083 | 0.312 | 0.09 | | | TNGN-654 | • | | TNGN-330716 | (| 0.750 | 1.299 | 0.312 | 0.06 | | | TNGN-656 | • | A | TNGN-330724 | (| 0.750 | 1.299 | 0.312 | 0.09 | | | TNGN-664 | • | | TNGN-330916 | (| 0.750 | 1.299 | 0.375 | 0.06 | | | TNGN-666 | • | A | TNGN-330924 | (| 0.750 | 1.299 | 0.375 | 0.09 | | | TNGN-668 | • | | TNGN-330932 | (| 0.750 | 1.299 | 0.375 | 0.12 | | | TNGN-776 | • | lack | TNGN-381124 | (| 0.875 | 1.516 | 0.437 | 0.09 | | | TNGN-778 | • | | TNGN-381132 | | 0.875 | 1.516 | 0.437 | 0.12 | | | TNGN-7710 | • | A | TNGN-381140 | (| 0.875 | 1.516 | 0.437 | 0.15 | | | TNGN-878 | • | A | TNGN-441132 | | 1.000 | 1.732 | 0.437 | 0.12 | # **Triangle Inserts**Negative Flat Top (TNUN) | | | | st
on | | | Dimensio | ons (inches | s) | |--------------------|---------------------|--------|-----------------------------|--------------------|-------------------|----------|-------------|-------| | Shape:
Triangle | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | L | Т | R | | | TNUN-321 | • | | TNUN-160304 | 0.375 | 0.650 | 0.125 | 0.015 | | | TNUN-322 | • | \blacktriangle | TNUN-160308 | 0.375 | 0.650 | 0.125 | 0.031 | | | TNUN-323 | • | | TNUN-160312 | 0.375 | 0.650 | 0.125 | 0.047 | | | TNUN-332 | • | | TNUN-160408 | 0.375 | 0.650 | 0.187 | 0.031 | | | TNUN-333 | • | | TNUN-160412 | 0.375 | 0.650 | 0.187 | 0.047 | | | TNUN-334 | • | $\color{red}\blacktriangle$ | TNUN-160416 | 0.375 | 0.650 | 0.187 | 0.062 | | | TNUN-432 | • | | TNUN-220408 | 0.500 | 0.866 | 0.187 | 0.031 | | | TNUN-433 | • | | TNUN-220412 | 0.500 | 0.866 | 0.187 | 0.047 | | | TNUN-434 | • | | TNUN-220416 | 0.500 | 0.866 | 0.187 | 0.062 | | | TNUN-438 | • | | TNUN-220432 | 0.500 | 0.866 | 0.187 | 0.125 | | | TNUN-441 | • | A | TNUN-220604 | 0.500 | 0.866 | 0.250 | 0.015 | | | TNUN-442 | • | | TNUN-220608 | 0.500 | 0.866 | 0.250 | 0.031 | | | TNUN-443 | • | A | TNUN-220612 | 0.500 | 0.866 | 0.250 | 0.047 | | | TNUN-444 | • | | TNUN-220616 | 0.500 | 0.866 | 0.250 | 0.062 | | | TNUN-448 | • | A | TNUN-220632 | 0.500 | 0.866 | 0.250 | 0.125 | | | TNUN-542 | • | | TNUN-270608 | 0.625 | 1.083 | 0.250 | 0.031 | | | TNUN-543 | • | A | TNUN-270612 | 0.625 | 1.083 | 0.250 | 0.047 | | | TNUN-544 | • | | TNUN-270616 | 0.625 | 1.083 | 0.250 | 0.062 | | | TNUN-546 | • | A | TNUN-270624 | 0.625 | 1.083 | 0.250 | 0.094 | | | TNUN-552 | • | | TNUN-270708 | 0.625 | 1.083 | 0.312 | 0.031 | | | TNUN-553 | • | A | TNUN-270712 | 0.625 | 1.083 | 0.312 | 0.047 | | | TNUN-554 | • | | TNUN-270716 | 0.625 | 1.083 | 0.312 | 0.062 | | | TNUN-556 | • | A | TNUN-270724 | 0.625 | 1.083 | 0.312 | 0.094 | | | TNUN-654 | • | | TNUN-330716 | 0.750 | 1.299 | 0.312 | 0.062 | | | TNUN-656 | • | A | TNUN-330724 | 0.750 | 1.299 | 0.312 | 0.094 | | | TNUN-664 | • | | TNUN-330916 | 0.750 | 1.299 | 0.375 | 0.062 | | | TNUN-666 | • | A | TNUN-330924 | 0.750 | 1.299 | 0.375 | 0.094 | | | TNUN-668 | • | | TNUN-330932 | 0.750 | 1.299 | 0.375 | 0.125 | | | TNUN-776 | • | lack | TNUN-381124 | 0.875 | 1.516 | 0.437 | 0.094 | | | TNUN-778 | • | | TNUN-381132 | 0.875 | 1.516 | 0.437 | 0.125 | | | TNUN-7710 | • | lack | TNUN-381140 | 0.875 | 1.516 | 0.437 | 0.156 | ## 35° Diamond Inserts Negative Chip Control (VNGG-VNMG) | | | | | | Stee | | | | | ainle
Steel
M | | | Cast
Iron
K | | | at-Re
uper | Alloy | | | Tit | taniı
S | ım | | | Dime | ensions | (inches) |) | |---------------------|----------------------------|---------------------|----------|--------|----------|---------|--------|-----------|----------|---------------------|----------|-------|-------------------|----------|-------|---------------|----------|--------|----------|----------|------------|----------|--------------------|-------------------|-------|---------|----------|-------| | | Shape:
35° Diamond | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | 6-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | 6-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | | TurboForm® | VNGG-330.3-TF | | | | | | • | | • | ♦ | | | • | • | | | | | • | • | | VNGG-160401.3-TF | 0.375 | 0.654 | 0.187 | 0.150 | 0.005 | | ŊĠ | | VNGG-330.6-TF | | | | | | | | • | • | | | • | • | | | | | • | • | | VNGG-160402.6-TF | 0.375 | 0.654 | 0.187 | 0.150 | 0.010 | | ISHII | | VNGG-331-TF | | | | | | • | | • | • | | | • | • | | | | | • | • | | VNGG-160404-TF | 0.375 | 0.654 | 0.187 | 0.150 | 0.015 | | FIN | 0 | VNGG-332-TF | | | | | | | | • | • | | | • | • | | | | | • | • | | VNGG-160408-TF | 0.375 | 0.654 | 0.187 | 0.150 | 0.031 | | SION | | VNGG-333-TF | | | | | | • | A | • | • | | | • | • | | A | | | • | • | | VNGG-160412-TF | 0.375 | 0.654 | 0.187 | 0.150 | 0.047 | | PRECISION FINISHING | FF2 | VNMG-331-FF2 | A | • | | | | • | A | | • | | • | • | • | | A | | | • | • | A | VNMG-160404-FF2 | 0.375 | 0.654 | 0.187 | 0.150 | 0.015 | | | | VNMG-332-FF2 | | • | | | | | | | • | | • | | • | | | | | • | • | | VNMG-160408-FF2 | 0.375 | 0.654 | 0.187 | 0.150 | 0.031 | | 9 | | VNMG-333-FF2 | A | • | | | | • | A | | • | | • | • | • | | A | | | • | • | A | VNMG-160412-FF2 | 0.375 | 0.654 | 0.187 | 0.150 | 0.047 | | FINISHING | 0 | VNMG-432-FF2 | | • | | | | | | | • | | • | • | • | | | | | • | • | | VNMG-220408-FF2 | 0.500 | 0.872 | 0.187 | 0.203 | 0.031 | | FINI | GP2 | VNMG-332-GP2 | • | • | A | | | | A | | • | • | • | | • | | A | • | | A | • | • | VNMG-160408-GP2 | 0.375 | 0.654 | 0.187 | 0.150 | 0.031 | | SE | | VNMG-333-GP2 | • | • | | | | | | | • | | • | | • | | A | • | | | • | • | VNMG-160412-GP2 | 0.375 | 0.654 | 0.187 | 0.150 | 0.047 | | RP0. | | VNMG-432-GP2 | • | • | A | | | | A | | • | | • | | • | | A | • | _ | | • | • | VNMG-220408-GP2 | 0.500 | 0.872 | 0.187 | 0.203 | 0.031 | | GENERAL PURPOSE | OATINGS: MI-CVD Coated PVI | Ofnated Illegated | | | | | Fir | rst Choic | 70 🏚 | Saro | nd Choi | | ΔI+ | ernative | | | | Gra | de descr | intions | | os TA | | | | | | | ## 35° Diamond Inserts Negative Flat Top (VNMA) | | | | | st
on | | | Dimen | nsions (i | nches) | | |------------------------------------|-----------------------------|----------------------|--------|-------------|--|-------------------|-------|-----------|--------|-------| | Shape:
35° Diamond | Part Number
ANSI | | GA5023 | G-02 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | VNMA-331 | | • | | VNMA-160404 | 0.375 | 0.654 | 0.187 | 0.150 | 0.015 | | 9 4 | VNMA-332 | | • | | VNMA-160408 | 0.375 | 0.654 | 0.187 | 0.150 | 0.031 | | | VNMA-431 | | • | A | VNMA-220404 | 0.500 | 0.872 | 0.187 | 0.203 | 0.015 | | | VNMA-432 | | • | | VNMA-220408 | 0.500 | 0.872 | 0.187 | 0.203 | 0.031 | | CARBIDE COATINGS: MT-CVD Coated PV | D Coated Uncoated First Cho | oice Second Choice | ce • | Altern | ative Grade descriptions — pages T 4 | | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated PVD Coated First Choice ◆ For additional nose radii and available edge preps, please contact Greenleaf Technical Service. # **80° Trigon Inserts**Negative Chip Control (WNMG) | hape:
0° Trigon | D | | | P | | | | | Steel
M | | | Iron
K | | 31 | iper i | Alloy | /5 | | | S | | | | Dime | ensions | (inches) | | |--------------------|---------------------|--------|--------|--------|---------|--------|--------|----------------------------|------------|--------|-------|-----------|--------|-------|--------|----------------------------|--------|-------|-----------------------------|----------|------------------|--------------------|-------------------|-------|---------|----------|-------| | FF | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610
 G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | WNMG-331-FF2 | lack | • | | | | • | $\color{red} \blacksquare$ | | • | | • | • | • | | $\color{red} \blacksquare$ | | | • | • | ▲ | WNMG-060404-FF2 | 0.375 | 0.257 | 0.187 | 0.150 | 0.015 | | | WNMG-332-FF2 | lack | • | | | | | | | • | | • | • | • | | \blacktriangle | | | | • | \blacktriangle | WNMG-060408-FF2 | 0.375 | 0.257 | 0.187 | 0.150 | 0.031 | | | WNMG-431-FF2 | lack | • | | | | • | \blacktriangle | | • | | • | • | • | | \blacktriangle | | | • | • | \blacktriangle | WNMG-080404-FF2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.015 | | | WNMG-432-FF2 | | • | | | | | | | • | | • | | • | | \blacktriangle | | | | • | | WNMG-080408-FF2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.031 | GP2 | WNMG-331-GP2 | • | • | lack | | | • | lack | | • | | • | • | • | | lack | | | lack | • | * | WNMG-060404-GP2 | 0.375 | 0.257 | 0.187 | 0.150 | 0.015 | | | WNMG-332-GP2 | • | • | | | | • | | | • | | • | • | • | | lack | | | lack | • | ♦ | WNMG-060408-GP2 | 0.375 | 0.257 | 0.187 | 0.150 | 0.031 | | | WNMG-431-GP2 | • | • | | | | • | lack | | • | | • | • | • | | lack | | | lack | • | * | WNMG-080404-GP2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.015 | | | WNMG-432-GP2 | • | • | | | | • | | | • | | • | • | • | | lack | | | lack | • | * | WNMG-080408-GP2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.031 | | | WNMG-433-GP2 | • | • | | | | • | lack | | • | | • | • | • | | \blacktriangle | | | lack | • | • | WNMG-080412-GP2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.047 | | | WNMG-434-GP2 | • | • | | | | | | | • | | • | • | • | | $\color{red} \blacksquare$ | | | $\color{red}\blacktriangle$ | • | • | WNMG-080416-GP2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.062 | MR2 | WNMG-432-MR2 | | • | | | | | A | | • | • | • | | • | | A | | | • | A | • | WNMG-080408-MR2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.031 | | | WNMG-433-MR2 | | • | | | | | | | • | • | • | | • | | lack | | | | | • | WNMG-080412-MR2 | 0.500 | 0.342 | 0.187 | 0.203 | 0.047 | # **80° Trigon Inserts**Negative Flat Top (WNMA) | | | Ir | ist
on | | | Dimer | nsions (i | nches) | | |---------------------------------|---------------------|--------|-----------|--------------------|-------------------|-------|-----------|--------|-------| | Shape:
80° Trigon | Part Number
ANSI | GA5023 | 6-02 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | | WNMA-331 | • | | WNMA-060404 | 0.375 | 0.257 | 0.187 | 0.150 | 0.015 | | | WNMA-332 | • | | WNMA-060408 | 0.375 | 0.257 | 0.187 | 0.150 | 0.031 | | | WNMA-333 | • | A | WNMA-060412 | 0.375 | 0.257 | 0.187 | 0.150 | 0.047 | | | WNMA-431 | • | | WNMA-080404 | 0.500 | 0.342 | 0.187 | 0.203 | 0.015 | | | WNMA-432 | • | | WNMA-080408 | 0.500 | 0.342 | 0.187 | 0.203 | 0.031 | | | WNMA-433 | • | | WNMA-080412 | 0.500 | 0.342 | 0.187 | 0.203 | 0.047 | | CARRIDE COATINGS, MT CIR Coated | WNMA-434 | • | A | WNMA-080416 | 0.500 | 0.342 | 0.187 | 0.203 | 0.062 | ### 80° Diamond Inserts Positive Flat Top (CPGN) | | | | Steel
P | | | | S | tainle
Steel | | | Cast
Iron | | | -Resi
er All | stant
loys | | | | Dimensio | ons (inche | s) | |---------------------------------|---------------------|--------|------------|----------|------------|--------|--------|-----------------|--------|------------|--------------|--------|-------|-----------------|---------------|---------|--------------------|-------------------|----------|------------|-------| | | | | | P | | | | M | | | K | | | S | | | | | | | | | Shape:
80° Diamond | Part Number
ANSI | GA5025 | GA5035 | GA5125 | 6-9120 | GA5026 | 6-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | 6-9230 | G-20M | Part Number
ISO | A _{I.C.} | L | т | R | | | CPGN-422 | • | • | A | | • | | | • | | • | • | • | | A | | CPGN-120308 | 0.500 | 0.507 | 0.125 | 0.031 | | | CPGN-424 | • | • | | | • | | | • | | • | • | • | | A | | CPGN-120316 | 0.500 | 0.507 | 0.125 | 0.062 | | | CPGN-426 | • | • | | | • | | | • | | • | • | • | | | | CPGN-120324 | 0.500 | 0.507 | 0.125 | 0.094 | | | CPGN-433 | • | • | | | • | | | • | | • | • | • | | A | | CPGN-120412 | 0.500 | 0.507 | 0.187 | 0.047 | | | CPGN-434 | • | • | | | • | | | • | | • | • | • | | | | CPGN-120416 | 0.500 | 0.507 | 0.187 | 0.062 | | | CPGN-632 | | • | | • | | | | • | • | • | | • | | | • | CPGN-190408 | 0.750 | 0.761 | 0.187 | 0.031 | | | CPGN-633 | | • | | • | | | | • | • | • | | • | | | • | CPGN-190412 | 0.750 | 0.761 | 0.187 | 0.047 | | CARBIDE COATINGS: MT-CVD Coated | PVD Coated Uncoated | | | Fi | irst Choic | e 🔷 | Second | Choice | • / | Alternativ | e 🛦 | | | Grade a | lescriptio | ns — pa | ges T 4 | | | | | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ ### **Round Inserts** Positive Flat Top (RPGN) | | | | | eel | | | | ainle
Steel
M | | | Cast
Iron
K | | Heat
Sup | -Resi
er Al | | | | Dimensio | ns (inches) | |-------------------------------------|---------------------|--------|--------|----------|------------|--------|----------|---------------------|--------|-----------|-------------------|--------|-------------|----------------|----------|----------|--------------------|-------------------|-------------| | Shape:
Round | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-20M | Part Number
ISO | A _{I.C.} | ī | | | RPGN-32 | • | • | A | | • | A | | • | | • | • | • | | A | | RPGN-090300 | 0.375 | 0.125 | | | RPGN-43 | • | • | | | • | | | • | | • | • | • | | | | RPGN-120400 | 0.500 | 0.187 | | CARBIDE COATINGS: MT-CVD Coated PV/ | O Coated Unicoated | | | | rst Choice | | Second | | | lternativ | | | | | | ons — po | | | | ### **Round Inserts** Positive Chip Control (RCGT-RPGT-RCMT) | | | Steel
P | | | | | | inles
teel | S | | ast
ron | | | at-Re
iper <i>l</i> | | | | Tit | taniu | ım | | | Dimensio | ons (inches | s) | |---------------------|---|---|--|-------------------|--|--|-----------------------------|-------------------|----------|---------------------|------------|--|----------|------------------------|------------------------|--
---|--|--|---|--------------------
--|---|--|---------------------------------| | | | | P | | | | | M | | | K | | | S | | | | | S | | | | | | | | Part Number
NNSI | GA5025 | GA5035 | GA5125 | 6-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-9610 | G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | T | D | X | | RCGT-22-TF | | | | | | • | | | • | | | • | • | | A | | | • | • | | RCGT-060300-TF | 0.250 | 0.125 | 0.134 | 7° | | RCGT-32.5-TF | | | | | | • | \blacktriangle | | • | | | • | • | | ▲ | | | • | • | | RCGT-09T300-TF | 0.375 | 0.156 | 0.173 | 7° | | RCGT-43-TF | | | | | | • | $\color{red} \blacksquare$ | | • | | | • | • | | A | | | • | • | | RCGT-120400-TF | 0.500 | 0.187 | 0.217 | 7° | | RPGT-22-TF | | | | | | • | A | | • | | T | • | • | | A | | | • | • | | RPGT-060300-TF | 0.250 | 0.125 | 0.134 | 11° | | RPGT-32.5-TF | | | | | | • | $\color{red}\blacktriangle$ | | • | | | • | • | | lack | | | • | • | | RPGT-09T300-TF | 0.375 | 0.156 | 0.173 | 11° | | RPGT-43-TF | | | | | | • | $\color{red}\blacktriangle$ | | • | | | • | • | | A | | | • | • | | RPGT-120400-TF | 0.500 | 0.187 | 0.217 | 11° | | RCMT-10T3-TF | | | | | | • | lack | | • | | П | • | • | | A | | | • | • | | RCMT-10T3-TF | 0.394 | 0.156 | 0.173 | 7° | | RCMT-1204-TF | | | | | | • | lack | | • | | | • | • | | A | | | • | • | | RCMT-1204-TF | 0.472 | 0.187 | 0.173 | 7° | | RCMT-1606-TF | | | | | | • | \blacktriangle | | • | | | • | • | | A | | | • | • | | RCMT-1606-TF | 0.630 | 0.250 | 0.217 | 7° | | RCMT-10T3-MR | | | | | | • | lack | | • | | T | • | • | | A | | | ♦ | | | RCMT-10T3-MR | 0.394 | 0.156 | 0.173 | 7° | | RCMT-1204-MR | | | | | | • | \blacktriangle | | • | | T | • | • | | A | | | • | | | RCMT-1204-MR | 0.472 | 0.187 | 0.173 | 7° | | RCMT-1606-MR | | | | | | • | \blacktriangle | | • | | | • | ♦ | | A | | | • | | | RCMT-1606-MR | 0.630 | 0.250 | 0.217 | 7° | | R R R R R R R | NSI CGT-22-TF CGT-32.5-TF CGT-43-TF PGT-22-TF PGT-32.5-TF PGT-43-TF CMT-10T3-TF CMT-1204-TF CMT-1073-MR CMT-1204-MR | NSI SS S | art Number NSI CGT-22-TF CGT-32.5-TF CGT-43-TF PGT-22-TF PGT-32.5-TF CMT-1013-TF CMT-1013-MR CMT-104-MR CMT-104-MR CMT-10606-MR | P Part Number NSI | P art Number NSI CGT-22-TF CGT-32.5-TF CGT-43-TF PGT-32.5-TF PGT-43-TF CMT-1013-TF CMT-104-TF CMT-104-MR CMT-104-MR CMT-106-MR | P art Number NSI CGT-22-TF CGT-32.5-TF CGT-32.5-TF PGT-22-TF PGT-32.5-TF CMT-1013-TF CMT-1013-MR CMT-1004-MR CMT-1006-MR | P art Number NSI | P art Number NSI | P | P M art Number NSI | P | Steel Iron M K K K K K K K K | P | P | Steel Iron Super A | Steel Iron Super Alloy | Steel Iron Super Alloys Sup | Steel Iron Super Alloys Super Alloys Super Alloys Steel Iron Super Alloys Supe | Steel Iron Super Alloys Super Alloys Super Alloys Steel Iron Super Alloys Supe | Steel Iron Super Alloys Steel Iron Super Alloys Steel Iron Steel Iron Super Alloys Steel Iron Steel Iron Steel Iron Super Alloys Steel Iron Steel Iron Super Alloys Iron Steel Iron Steel Iron Iron Super Alloys Iron | Steel | Steel Iron Super Alloys Supe | Steel Iron Super Alloys Mathematical Super Alloys Mathematical Namber NSI NS NS NS NS NS NS N | Steel Iron Super Alloys Manual Super No. Super Alloys Super Alloys Super No. Super Alloys S | Steel Iron Super Alloys P | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ ### **Round Inserts** Positive Chip Control (RCGR-RPGR) | | | | | Stee | | | | | ainle
Steel
M | | | Cast
Iron
K | | | nt-Re
iper | | | _ | Tit | taniı | um | | Dii | mensions (inc | ches) | |-----------------|---------------------|--------|--------|--------|---------|--------|--------|-------|---------------------|--------|-------|-------------------|--------|-------|---------------|----------|--------|-------|-------|--------|------|--------------------|-------------------|---------------|-------| | Shape:
Round | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-5125+ | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | 6-9610 | G-20M | G-925 | G-9610 | G-10 | Part Number
ISO | A _{I.C.} | т | х | | TurboForm® | RCGR-22-TF | | | | | | • | | | • | | | • | • | | A | | | • | • | | RCGR-060300-TF | 0.250 | 0.125 | 7° | | | RCGR-32.5-TF | | | | | | • | | | • | | | • | • | | | | | • | • | | RCGR-09T300-TF | 0.375 | 0.156 | 7° | | | RCGR-43-TF | | | | | | • | | | • | | | • | • | | | | | • | • | | RCGR-120400-TF | 0.500 | 0.187 | 7° | | | RPGR-22-TF | | | | | | • | | | • | | | • | • | | A | | | • | • | | RPGR-060300-TF | 0.250 | 0.125 | 11° | | | RPGR-32.5-TF | | | | | | • | | | • | | | • | • | | A | | | • | • | | RPGR-09T300-TF | 0.375 | 0.156 | 11° | | | RPGR-43-TF | | | | | | | | | • | | | • | • | | | | | • | • | | RPGR-120400-TF | 0.500 | 0.187 | 11° | # **Square Inserts**Positive Flat Top (SPGN-SPUN) | | | | St | eel | | | St | tainle
Steel | | | Cast
Iron | | | t-Resi
per Al | | | | | Dimensio | ons (inche | s) | |---------------------------------|---------------------|--------|--------|----------|------------|--------|----------|-----------------|--------|-----------|--------------|--------|-------|------------------|------------|--------|--------------------|-------------------|----------|------------|-------| | Shape:
Square | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-20M | Part Number
ISO | A _{I.C.} | L | т | R | | Square | | ₽
B | ₽
B | g | ۻ | g | نی | ۻ | نی | نی | g | B | ۻ | ۻ | ؿ | હે | | | | | | | | SPGN-322 | • | • | A | | • |
A | | • | | • | • | • | | A | | SPGN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SPGN-323 | • | • | | | | | | • | | • | • | • | | | | SPGN-090312 | 0.375 | 0.375 | 0.125 | 0.047 | | | SPGN-422 | • | • | A | | • | A | | • | | • | • | • | | A | | SPGN-120308 | 0.500 | 0.500 | 0.125 | 0.031 | | | SPGN-423 | • | • | | | • | | | • | | • | • | • | | | | SPGN-120312 | 0.500 | 0.500 | 0.125 | 0.047 | | | SPGN-424 | • | • | | | • | A | | • | | • | • | • | | A | | SPGN-120316 | 0.500 | 0.500 | 0.125 | 0.062 | | | SPGN-432 | • | • | | | • | | | • | | • | • | • | | | | SPGN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SPGN-433 | • | • | | | | | | • | | • | • | • | | | | SPGN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SPGN-434 | • | • | | | • | | | • | | • | • | • | | | | SPGN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | | SPGN-532 | • | • | | | • | | | • | | • | • | • | | | | SPGN-150408 | 0.625 | 0.625 | 0.187 | 0.031 | | | SPGN-534 | • | • | | | • | | | • | | • | • | • | | | | SPGN-150416 | 0.625 | 0.625 | 0.187 | 0.062 | | | SPGN-631 | | • | A | • | | A | | • | • | • | | • | | A | • | SPGN-190404 | 0.750 | 0.750 | 0.187 | 0.015 | | | SPGN-632 | | • | | • | | | | • | • | • | | • | | | • | SPGN-190408 | 0.750 | 0.750 | 0.187 | 0.031 | | | SPGN-633 | | • | A | • | | A | | • | • | • | | • | | A | • | SPGN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPGN-634 | | • | | • | | | | • | • | • | | • | | | • | SPGN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPGN-636 | | • | A | • | | A | | • | • | • | | • | | A | • | SPGN-190424 | 0.750 | 0.750 | 0.187 | 0.094 | | | SPGN-638 | | • | | • | | | | • | • | • | | • | | | • | SPGN-190432 | 0.750 | 0.750 | 0.187 | 0.125 | | | SPUN-422 | • | • | A | | • | A | | • | | • | • | • | | A | | SPUN-120308 | 0.500 | 0.500 | 0.125 | 0.031 | | | SPUN-423 | • | • | A | | • | A | | • | | • | • | • | | A | | SPUN-120312 | 0.500 | 0.500 | 0.125 | 0.047 | | | SPUN-424 | • | • | A | | • | A | | • | | • | • | • | | A | | SPUN-120316 | 0.500 | 0.500 | 0.125 | 0.062 | | | SPUN-432 | • | • | | | • | | | • | | • | • | • | | | | SPUN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SPUN-433 | • | • | A | | • | A | | • | | • | • | • | | A | | SPUN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SPUN-633 | | • | A | • | | | | • | • | • | | • | | A | • | SPUN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPUN-634 | | • | A | • | | A | | • | • | • | | • | | A | • | SPUN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPUN-643 | | • | A | • | | | | • | • | • | | • | | A | • | SPUN-190612 | 0.750 | 0.750 | 0.250 | 0.047 | | | SPUN-644 | | • | A | • | | A | | • | • | • | | • | | | • | SPUN-190616 | 0.750 | 0.750 | 0.250 | 0.062 | | | SPUN-864 | | • | A | • | | A | | • | • | • | | • | | A | • | SPUN-250916 | 1.000 | 1.000 | 0.375 | 0.062 | | | SPUN-866 | | • | <u> </u> | • | | <u> </u> | | • | • | • | | • | | A | • | SPUN-250924 | 1.000 | 1.000 | 0.375 | 0.094 | | | SPUN-868 | | • | | • | | | | • | • | • | | • | | A | • | SPUN-250932 | 1.000 | 1.000 | 0.375 | 0.125 | | | SPUN-1068 | | • | <u> </u> | • | | <u> </u> | | • | • | • | | • | | A | • | SPUN-310932 | 1.250 | 1.250 | 0.375 | 0.125 | | | SPUN-1288 | | • | | • | | | | • | • | • | | • | | | • | SPUN-381232 | 1.500 | 1.500 | 0.500 | 0.125 | | CARBIDE COATINGS: MT-CVD Coated | | | | Fi | rst Choice | • | | Choice (| | Iternativ | | | | Grade a | lescriptic | ns — n | | | | 0.500 | 31.23 | ## **Triangle Inserts**Positive Flat Top (TPGN) | | | | Sto | eel | | | | ainle
Steel | | | Cast
Iron | | | -Resi
er Al | stant
loys | | | | Dimensio | ons (inche | s) | |--------------------|---------------------|--------|----------|----------|--------|--------|----------|----------------|----------|-------|--------------|--------|-------|----------------|---------------|-------|--------------------|-------------------|----------|------------|-------| | | | | ı | P | | | | M | | | K | | | S | | | | | | , | , | | Shape:
Triangle | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-9120 | GA5026 | G-925 | G-920 | 6-9230 | G-915 | GA5023 | GA5026 | G-925 | G-920 | 6-9230 | G-20M | Part Number
ISO | A _{I.C.} | Т | D | R | | | TPGN-221 | • | • | | | • | A | | • | | • | • | • | | | | TPGN-110304 | 0.250 | 0.433 | 0.125 | 0.015 | | | TPGN-222 | • | • | A | | • | A | | • | | • | • | • | | | | TPGN-110308 | 0.250 | 0.433 | 0.125 | 0.031 | | | TPGN-223 | • | • | | | • | | | • | | • | • | • | | | | TPGN-110312 | 0.250 | 0.433 | 0.125 | 0.047 | | | TPGN-224 | • | • | | | • | | | • | | • | • | • | | | | TPGN-110316 | 0.250 | 0.433 | 0.125 | 0.062 | | | TPGN-320 | • | • | | | • | | | • | | • | • | • | | | | TPGN-160300 | 0.375 | 0.650 | 0.125 | 0.005 | | | TPGN-321 | • | • | | | • | | | • | | ♦ | • | • | | | | TPGN-160304 | 0.375 | 0.650 | 0.125 | 0.015 | | | TPGN-322 | • | • | | | • | | | • | | • | • | • | | | | TPGN-160308 | 0.375 | 0.650 | 0.125 | 0.031 | | | TPGN-323 | • | • | | | • | | | • | | ♦ | • | • | | | | TPGN-160312 | 0.375 | 0.650 | 0.125 | 0.047 | | | TPGN-324 | • | • | | | • | | | • | | • | • | • | | | | TPGN-160316 | 0.375 | 0.650 | 0.125 | 0.062 | | | TPGN-334 | • | • | | | • | | | • | | • | • | • | | | | TPGN-160416 | 0.375 | 0.650 | 0.187 | 0.062 | | | TPGN-336 | • | • | | | • | | | • | | • | • | • | | | | TPGN-160424 | 0.375 | 0.650 | 0.187 | 0.094 | | | TPGN-431 | • | • | | | • | | | • | | • | • | • | | | | TPGN-220404 | 0.500 | 0.866 | 0.187 | 0.015 | | | TPGN-432 | • | • | | | • | | | • | | • | • | • | | | | TPGN-220408 | 0.500 | 0.866 | 0.187 | 0.031 | | | TPGN-433 | • | • | | | • | | | • | | • | • | • | | | | TPGN-220412 | 0.500 | 0.866 | 0.187 | 0.047 | | | TPGN-434 | • | • | | | • | | | • | | • | • | • | | | | TPGN-220416 | 0.500 | 0.866 | 0.187 | 0.062 | | | TPGN-436 | • | • | | | • | | | • | | • | • | • | | | | TPGN-220424 | 0.500 | 0.866 | 0.187 | 0.094 | | | TPGN-532 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270408 | 0.625 | 1.083 | 0.187 | 0.031 | | | TPGN-533 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270412 | 0.625 | 1.083 | 0.187 | 0.047 | | | TPGN-534 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270416 | 0.625 | 1.083 | 0.187 | 0.062 | | | TPGN-541 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270604 | 0.625 | 1.083 | 0.250 | 0.015 | | | TPGN-542 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270608 | 0.625 | 1.083 | 0.250 | 0.031 | | | TPGN-543 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270612 | 0.625 | 1.083 | 0.250 | 0.047 | | | TPGN-544 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270616 | 0.625 | 1.083 | 0.250 | 0.062 | | | TPGN-548 | • | • | | | | | | * | • | * | | • | | | • | TPGN-270632 | 0.625 | 1.083 | 0.250 | 0.125 | | | TPGN-554 | • | • | A | | | A | | • | • | • | | • | | A | • | TPGN-270716 | 0.625 | 1.083 | 0.312 | 0.062 | | | TPGN-556 | • | • | | | | | | • | • | • | | • | | | • | TPGN-270724 | 0.625 | 1.083 | 0.312 | 0.094 | | | TPGN-666 | • | • | | | | A | | • | • | • | | • | | A | • | TPGN-330924 | 0.750 | 1.299 | 0.375 | 0.094 | # **Triangle Inserts**Positive Flat Top (TPUN) | | | | St | eel | | | | tainle
Steel | | | Cast
Iron | | | t-Resi
per Al | | | | | Dimensio | ons (inche | s) | |------------------------------------|---------------------|--------|--------|----------|-------------|--------|----------|-----------------|--------|-----------|--------------|--------|-------|------------------|------------|---------|--------------------|-------------------|----------|------------|-------| | | | | ı | P | | | | M | | | K | | | S | | | | | | | | | Shape:
Triangle | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-9120 | GA5026 | G-925 | 6-920 | G-9230 | 6-915 | GA5023 | GA5026 | G-925 | G-920 | G-9230 | G-20M | Part Number
ISO | A _{I.C.} | L | T | R | | | TPUN-321 | • | • | A | | • | A | | • | | • | • | • | | A | | TPUN-160304 | 0.375 | 0.650 | 0.125 | 0.015 | | | TPUN-322 | • | • | | | • | | | • | | • | • | • | | | | TPUN-160308 | 0.375 | 0.650 | 0.125 | 0.031 | | | TPUN-323 | • | • | | | • | A | | • | | • | • | • | | | | TPUN-160312 | 0.375 | 0.650 | 0.125 | 0.047 | | | TPUN-431 | • | • | | | • | | | • | | • | • | • | | | | TPUN-220404 | 0.500 | 0.866 | 0.187 | 0.015 | | | TPUN-432 | • | • | | | • | | | • | | • | • | • | | | | TPUN-220408 | 0.500 | 0.866 | 0.187 | 0.031 | | | TPUN-433 | • | • | | | • | | | • | | • | • | • | | | | TPUN-220412 | 0.500 | 0.866 | 0.187 | 0.047 | | | TPUN-434 | • | • | | | • | | | • | | • | • | • | | | | TPUN-220416 | 0.500 | 0.866 | 0.187 | 0.062 | | | TPUN-542 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270608 | 0.625 | 1.083 | 0.250 | 0.031 | | | TPUN-543 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270612 | 0.625 | 1.083 | 0.250 | 0.047 | | | TPUN-544 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270616 | 0.625 | 1.083 | 0.250 | 0.062 | | | TPUN-552 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270708 | 0.625 | 1.083 | 0.312 | 0.031 | | | TPUN-553 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270712 | 0.625 | 1.083 | 0.312 | 0.047 | | | TPUN-554 | • | • | A | | • | A | | • | | • | • | • | | A | | TPUN-270716 | 0.625 | 1.083 | 0.312 | 0.062 | | | TPUN-556 | • | • | | | • | | | • | | • | • | • | | | | TPUN-270724 | 0.625 | 1.083 | 0.312 | 0.094 | | | TPUN-664 | | • | | • | | A | | • | • | • | | • | | | • | TPUN-330916 | 0.750 | 1.299 | 0.375 | 0.062 | | | TPUN-666 | | • | | • | | | | • | • | • | | • | | | • | TPUN-330924 | 0.750 | 1.299 | 0.375 | 0.094 | | CARBIDE COATINGS: MT-CVD Coated PV | D Coated Uncoated | | | Fi | irst Choice | • | Second | Choice (| ● A |
lternativ | е 🔺 | | | Grade a | lescriptio | ns — pa | ges T 4 | | | | | ## **Triangle Inserts**Positive Flat Top (TP-TPGA) | | | | | eel | | | | ainle
Steel
M | | | Cast
Iron
K | | Heat
Sup | t-Resi
per Al | stant
loys | | | | Dimensio | ons (inche | s) | |--------------------|---------------------|--------|--------|----------|--------|--------|----------|---------------------|--------|-------|-------------------|--------|-------------|------------------|---------------|-------|--------------------|-------------------|----------|------------|-------| | Shape:
Triangle | Part Number
ANSI | GA5025 | GA5035 | GA5125 | 6-9120 | GA5026 | 6-925 | G-920 | 6-9230 | 6-915 | GA5023 | GA5026 | 6-925 | G-920 | G-9230 | G-20M | Part Number
ISO | A _{I.C.} | T | D | X | | | TP-41 | • | • | | | • | | | • | | • | • | • | | | | TP-41 | 0.250 | 0.093 | 0.137 | 0.015 | | | TP-42 | • | • | | | • | | | • | | • | • | • | | | | TP-42 | 0.250 | 0.093 | 0.137 | 0.031 | | | TP-62 | • | • | A | | • | A | | • | | • | • | • | | A | | TP-62 | 0.375 | 0.125 | 0.163 | 0.031 | | | TP-64 | • | • | | | • | | | • | | • | • | • | | | | TP-64 | 0.375 | 0.125 | 0.163 | 0.062 | | | TP-82 | • | • | A | | • | | | • | | • | • | • | | A | | TP-82 | 0.500 | 0.187 | 0.203 | 0.031 | TPGA-321 | • | • | | | • | | | • | | • | • | • | | A | | TPGA-160304 | 0.375 | 0.125 | 0.150 | 0.015 | | | TPGA-322 | • | • | | | • | | | • | | • | • | • | | | | TPGA-160308 | 0.375 | 0.125 | 0.150 | 0.031 | | | TPGA-323 | • | • | | | • | | | • | | • | • | • | | | | TPGA-160312 | 0.375 | 0.125 | 0.150 | 0.047 | # **80° Trigon Inserts** Chip Control: Screw On (WCMT) | | | St | eel | | | | | | | Cast
Iron | | | | | | | | Dimen | nsions (i | nches) | | |---------------------|--|--|--|---------------|------------------|-------------|-------------|---|---|---|--------------------|--------------------|----------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---|---|--| | | | ا | P | | | | M | | | K | | | S | | | | | | | | | | Part Number
ANSI | GA5025 | GA5035 | GA5125 | G-9120 | GA5026 | G-925 | G-920 | G-9230 | G-915 | GA5023 | GA5026 | 6-925 | G-920 | 6-9230 | G-20M | Part Number
ISO | A _{I.C.} | L | T | D | R | | WCMT-21.5.5-X3 | • | • | | | • | | | • | | • | • | • | | A | | WCMT-060202-X3 | 0.250 | 0.171 | 0.093 | 0.110 | 0.008 | | WCMT-21.51-X3 | • | • | | | • | | | • | | • | • | • | | | | WCMT-060204-X3 | 0.250 | 0.171 | 0.093 | 0.110 | 0.015 | | WCMT-32.51-X3 | • | • | | | • | | | • | | • | • | • | | | | WCMT-09T304-X3 | 0.375 | 0.256 | 0.156 | 0.173 | 0.015 | | WCMT-32.52-X3 | • | • | | | • | | | • | | • | • | • | | | | WCMT-09T308-X3 | 0.375 | 0.256 | 0.156 | 0.173 | 0.031 | WCMT-21.5.5-X3 WCMT-21.51-X3 WCMT-32.51-X3 | WCMT-21.5.5-X3 WCMT-21.51-X3 WCMT-32.51-X3 | Part Number ANSI \$2 \$6 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 \$9 | WCMT-21.51-X3 | Part Number ANSI | Part Number | Part Number | Part Number ANSI WCMT-21.51-X3 WCMT-32.51-X3 | Part Number ANSI WCMT-21.5.5-X3 WCMT-21.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 WCMT-32.51-X3 | Part Number ANSI WCMT-21.51-X3 WCMT-32.51-X3 | Part Number ANSI | Part Number ANSI | Part Number ANSI P M K | Part Number ANSI Steel Steel No. Super Alloys Part Number Iso Part Number Al.c. L | Part Number ANSI Steel Steel No. Super Alloys No. Super Alloys Part Number Iso N | Part Number ANSI Steel | ## **Radius Forming Inserts** Flat Top (SNMA) | | | | | | | Dimensio | ns (inches | s) | |---------------------|--|--|--|--|--
--|---|--| | Part Number
ANSI | G-02 | 09-9 | GA5035 | Part Number
ISO | A _{I.C.} | L | T | R | | SNMA-64IR4 | | • | • | SNMA-64IR4 | 0.750 | 0.250 | 0.312 | 0.062 | | SNMA-64IR6 | | • | • | SNMA-64IR6 | 0.750 | 0.250 | 0.312 | 0.093 | | SNMA-64IR8 | | • | • | SNMA-64IR8 | 0.750 | 0.250 | 0.312 | 0.125 | | SNMA-64IR10 | | • | • | SNMA-64IR10 | 0.750 | 0.250 | 0.312 | 0.156 | | SNMA-84IR12 | | • | • | SNMA-84IR12 | 1.000 | 0.250 | 0.359 | 0.187 | | SNMA-84IR14 | | • | • | SNMA-84IR14 | 1.000 | 0.250 | 0.359 | 0.218 | | SNMA-84IR16 | | • | • | SNMA-84IR16 | 1.000 | 0.250 | 0.359 | 0.250 | | SNMA-106IR20 | | • | • | SNMA-106IR20 | 1.250 | 0.375 | 0.500 | 0.312 | | SNMA-106IR24 | | • | • | SNMA-106IR24 | 1.250 | 0.375 | 0.500 | 0.375 | | SNMA-126IR28 | | • | • | SNMA-126IR28 | 1.500 | 0.375 | 0.500 | 0.437 | | SNMA-126IR32 | | • | • | SNMA-126IR32 | 1.500 | 0.375 | 0.500 | 0.500 | | | ANSI SNMA-64IR4 SNMA-64IR6 SNMA-64IR10 SNMA-84IR12 SNMA-84IR14 SNMA-84IR16 SNMA-106IR20 SNMA-106IR24 SNMA-126IR28 | ANSI SNMA-64IR4 SNMA-64IR6 SNMA-64IR8 SNMA-64IR10 SNMA-84IR12 SNMA-84IR14 SNMA-84IR16 SNMA-106IR20 SNMA-106IR24 SNMA-126IR28 | ANSI SNMA-64IR4 SNMA-64IR6 SNMA-64IR8 SNMA-64IR10 SNMA-84IR12 SNMA-84IR14 SNMA-84IR16 SNMA-106IR20 SNMA-106IR24 SNMA-126IR28 | ANSI SNMA-64IR4 SNMA-64IR6 SNMA-64IR8 SNMA-64IR10 SNMA-84IR12 SNMA-84IR14 SNMA-84IR16 SNMA-106IR20 SNMA-106IR24 SNMA-126IR28 | ANSI € € € € € € ISO SNMA-64IR4 • • • SNMA-64IR4 SNMA-64IR6 • • • SNMA-64IR6 SNMA-64IR8 • • SNMA-64IR8 SNMA-64IR10 • SNMA-64IR10 SNMA-84IR12 • • SNMA-84IR12 SNMA-84IR14 • • SNMA-84IR14 SNMA-84IR16 • • SNMA-84IR16 SNMA-106IR20 • • SNMA-106IR24 SNMA-106IR24 • • SNMA-126IR28 | ANSI 3 3 5 ISO AI.C. SNMA-64IR4 0.750 SNMA-64IR6 0.750 SNMA-64IR8 0.750 SNMA-64IR10 0.750 SNMA-64IR10 0.750 SNMA-84IR12 0.750 SNMA-84IR12 1.000 SNMA-84IR14 0.750 SNMA-84IR14 1.000 SNMA-84IR16 0.750 SNMA-106IR20 0.750 SNMA-106IR24 0.750 SNMA-106IR24 0.750 SNMA-126IR28 0.750 SNMA-126IR28 1.500 | Part Number
ANSI Part Number
ISO Part Number
ISO A LC. L SNMA-64IR4 0.750 0.250 SNMA-64IR6 0.750 0.250 SNMA-64IR8 0.750 0.250 SNMA-64IR10 0.750 0.250 SNMA-84IR10 0.750 0.250 SNMA-84IR12 0.750 0.250 SNMA-84IR14 0.750 0.250 SNMA-84IR16 1.000 0.250 SNMA-106IR20 1.250 0.375 SNMA-106IR24 0.375 SNMA-126IR28 1.500 0.375 | ANSI G G G G G ISO A I.C. L I SNMA-64IR4 0.750 0.250 0.312 SNMA-64IR6 0.750 0.250 0.312 SNMA-64IR8 0.750 0.250 0.312 SNMA-64IR10 0.750 0.250 0.312 SNMA-84IR12 0.750 0.250 0.312 SNMA-84IR14 0.00 0.250 0.359 SNMA-84IR14 0.00 0.250 0.359 SNMA-84IR16 0.00 0.250 0.359 SNMA-106IR20 0.375 0.500 SNMA-106IR24 0.375 0.500 SNMA-126IR28 0.375 0.500 | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ## Style GSRN | Part Number | Dime | nsions (iı | nches) | | Stand | ard Components | | Tune-Up Kit | Insert Options | | |-------------|-------|------------|--------|------|------------|----------------|-------------|-------------|---------------------------|----------------| | Neutral | A | В | C | Shim | Center Pin | Clamp | Clamp Screw | | Insert | R | | GSRN-646 | 0.750 | 1.000 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR4 | 0.062 | | GSRN-656 | 0.750 | 1.250 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR6 | 0.093 | | GSRN-666 | 0.750 | 1.500 | 7.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR8
SNMA-64IR10 | 0.125
0.156 | | GSRN-168 | 1.000 | 1.000 | 6.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR12 | 0.187 | | GSRN-858 | 1.000 | 1.250 | 7.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR14 | 0.218 | | GSRN-868 | 1.000 | 1.500 | 8.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR16 | 0.250 | | GSRN-2010 | 1.250 | 1.250 | 7.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR20 | 0.312 | | GSRN-2410 | 1.500 | 1.500 | 8.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR24 | 0.375 | | GSRN-2412 | 1.500 | 1.500 | 8.000 | SR12 | 30545 | 30319-2 | 30320 | TK-00574 | SNMA-126IR28 | 0.437 | | | 1 | 500 | 0.000 | 5,2 | 55515 | 50517 2 | 33320 | 5057 1 | SNMA-126IR32 | 0.500 | These toolholders are Greenleaf standards and do not conform to the ANSI identification system. ### **Ceramic Inserts** Greenleaf is the industry leader in the development and manufacturing of ceramic and coated ceramic inserts in ANSI standard and special geometries. #### **Insert Grades** #### **Ceramic** Greenleaf is the industry leader in the development and manufacturing of ceramic and coated ceramic inserts in ANSI standard and special geometries. Some of the most prominent include: #### WG-300[®] A SiC whisker-reinforced $\rm Al_2O_3$ ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300° the first choice worldwide for grooving and turning difficult materials. #### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted cuts, forging scale removal, and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### WG-600[®] A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600° include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as milling of hardened steels and select stainless steels. WG-600° is particularly well-suited for finish-turning and grooving of Heat-Resistant Super Alloys and is unmatched in both turning and milling of steels with a hardness above 60 HRc. #### **GSN100™** An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. #### WG-700™ A SiC whisker-reinforced Al₂O₃ ceramic featuring improved toughness and a unique low-friction coating. WG-700™ is ideal for turning, grooving, and profiling nickel- and cobalt-based super alloys that other ceramics may struggle in. WG-700™ exhibits exceptional tool life and productivity in next-generation formulations or novel heat treatments of Heat-Resistant Super Alloys, and long-reach or thinwalled applications with lower rigidity. #### GEM-8™ An Al_2O_3 + TiC composite ceramic exhibiting excellent hardness and strength at elevated temperatures. GEM-8TM offers a high degree of predictability in roll turning and continuous cuts in ferrous alloys. ## Insert Grade Reference for Turning ## **Edge Preparations** | Edge
Prep | Hone | Primary
Land | Primary
Angle | Application | |--------------|--------------|-----------------|------------------|---| | A | .0005001″ R. | - | - | For light finishing and grooving, also added to designated negative lands (i.e. T1, T2, T9). | | T1 | - | .002004" | 20° | General purpose for turning and light milling in dean high-temp. alloys and materials <50HRc. | | T1A | .0005001″ R. | .002004" | 20° | Used where more protection is needed than T1 such as in scale and light interruptions, hard turning. | | T2 | - | .006008" | 20° | General purpose chamfer for light to medium feed rates, cast-iron machining. | | T2A | .0005001″ R. | .006008" | 20° | Scale applications, light interruptions, weld overlays, finish turning and milling of hardened materials. | See pages ATI 22-23 for other
Greenleaf edge preps or call Greenleaf Technical Service for application concerns. ### A.N.S.I. Identification for Turning and Boring Inserts ## I.S.O. Identification for Turning and Boring Inserts ### **Pictorial Index** #### **Negative Inserts** 80° Diamond page: T 49 80° Diamond 55° Diamond 55° Diamond page: 150 Round page: T51 Round page: T51 Square page: T52 Square page: T53 Triangle page: T54 #### **Negative Inserts** continued Triangle page: T54 35° Diamond page: 755 Trigon page: 756 #### **V-Bottom Round Inserts** RCGN Positive: Ceramic page: GP 14 RPGN Positive: Ceramic page: GP 15 RCGR/RPGR Positive Chipform V-Bottom page: GP 16 #### **Positive Inserts** 80° Diamond Positive Flat Top page: 7 57 Round Positive Flat Top page: T 58 Square Positive Flat Top page: 759 Triangle Positive Flat Top page: T60 Triangle page: T60 ### 80° Diamond Inserts Negative (CNGA) | | | S
Steel | | Cast
Iron
K | | | | esista
Alloy
S | | | St | lened
eel
H | | | | Dim | ensions | (inches) |) | |-----------------------|---------------------|------------|----------|-------------------|----------|--------|--------|----------------------|----------|--------|--------|-------------------|----------|--------------------|-------------------|-------|---------|----------|-------| | Shape:
80° Diamond | Part Number
ANSI | 009-5W | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-5W | WG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | т | D | R | | | CNGA-431 | • | A | • | • | • | • | A | * | • | • | * | A | CNGA-120404 | 0.500 | 0.508 | 0.187 | 0.203 | 0.015 | | | CNGA-432 | • | | • | • | • | • | | * | • | • | * | | CNGA-120408 | 0.500 | 0.508 | 0.187 | 0.203 | 0.031 | | | CNGA-433 | • | | • | • | • | • | | * | • | • | * | | CNGA-120412 | 0.500 | 0.508 | 0.187 | 0.203 | 0.047 | | | CNGA-434 | • | | • | • | • | • | | * | • | • | * | | CNGA-120416 | 0.500 | 0.508 | 0.187 | 0.203 | 0.062 | | The same of the | CNGA-453 | • | | • | • | • | • | | * | • | • | * | | CNGA-120712 | 0.500 | 0.508 | 0.312 | 0.203 | 0.047 | | | CNGA-454 | • | | • | • | • | • | | * | • | • | * | | CNGA-120716 | 0.500 | 0.508 | 0.312 | 0.203 | 0.062 | | | CNGA-542 | • | | • | • | • | • | | * | • | • | * | | CNGA-160608 | 0.625 | 0.635 | 0.250 | 0.250 | 0.031 | | | CNGA-543 | • | | • | • | • | • | | * | • | • | * | | CNGA-160612 | 0.625 | 0.635 | 0.250 | 0.250 | 0.047 | | | CNGA-544 | • | | • | • | • | • | | * | • | • | * | | CNGA-160616 | 0.625 | 0.635 | 0.250 | 0.250 | 0.062 | | | CNGA-643 | • | | • | • | • | • | | * | • | • | * | | CNGA-190612 | 0.750 | 0.762 | 0.250 | 0.312 | 0.047 | | | CNGA-644 | • | | • | • | • | • | | * | • | • | * | | CNGA-190616 | 0.750 | 0.762 | 0.250 | 0.312 | 0.062 | | | CNGA-652 | • | | • | • | • | • | | * | • | • | * | | CNGA-190708 | 0.750 | 0.762 | 0.312 | 0.312 | 0.031 | | | CNGA-653 | • | | • | • | • | • | | * | • | • | * | | CNGA-190712 | 0.750 | 0.762 | 0.312 | 0.312 | 0.047 | | | CNGA-654 | ♦ | | • | • | • | • | | * | • | • | * | | CNGA-190716 | 0.750 | 0.762 | 0.312 | 0.312 | 0.062 | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ## 80° Diamond Inserts Negative (CNGN) | | | S
Steel | l | Cast
Iron | | | | esista
Alloy | | | | ened
eel | l | | | Dimensio | ns (inches | 5) | |-----------------------|---------------------|------------|----------|--------------|----------|--------|--------|-----------------------------|----------|--------|--------|-------------|-------|--------------------|-------------------|----------|------------|-------| | | | M | | K | | | | S | | | | Н | | | | | | | | Shape:
80° Diamond | Part Number
ANSI | 009-5M | 009-5M | GSN100 | XSYTIN-1 | WG-300 | 009-5M | MG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | R | | | CNGN-431 | • | | • | • | • | • | | * | • | • | * | | CNGN-120404 | 0.500 | 0.508 | 0.187 | 0.015 | | | CNGN-432 | • | | • | • | • | • | lack | * | • | • | * | | CNGN-120408 | 0.500 | 0.508 | 0.187 | 0.031 | | | CNGN-433 | • | | • | • | • | • | A | * | • | • | * | | CNGN-120412 | 0.500 | 0.508 | 0.187 | 0.047 | | | CNGN-434 | • | A | • | • | • | • | | * | • | • | * | | CNGN-120416 | 0.500 | 0.508 | 0.187 | 0.062 | | 100 | CNGN-451 | • | | • | • | • | • | $\color{red}\blacktriangle$ | * | • | • | * | | CNGN-120704 | 0.500 | 0.508 | 0.312 | 0.015 | | | CNGN-452 | • | | • | • | • | • | \ | * | • | • | * | | CNGN-120708 | 0.500 | 0.508 | 0.312 | 0.031 | | | CNGN-453 | • | | • | • | • | • | | * | • | • | * | | CNGN-120712 | 0.500 | 0.508 | 0.312 | 0.047 | | | CNGN-454 | • | | • | • | • | • | | * | • | • | * | | CNGN-120716 | 0.500 | 0.508 | 0.312 | 0.062 | | | CNGN-542 | • | | • | • | • | • | lack | * | • | • | * | | CNGN-160608 | 0.625 | 0.635 | 0.250 | 0.031 | | | CNGN-543 | • | | • | • | • | • | | * | • | • | * | | CNGN-160612 | 0.625 | 0.635 | 0.250 | 0.047 | | | CNGN-642 | • | | • | • | • | • | | * | • | • | * | | CNGN-190608 | 0.750 | 0.762 | 0.250 | 0.031 | | | CNGN-643 | • | | • | • | • | • | | * | • | • | * | | CNGN-190612 | 0.750 | 0.762 | 0.250 | 0.047 | | | CNGN-644 | • | | • | • | • | • | | * | • | • | * | | CNGN-190616 | 0.750 | 0.762 | 0.250 | 0.062 | | | CNGN-658 | • | | • | • | • | • | | * | • | • | * | | CNGN-190732 | 0.750 | 0.762 | 0.312 | 0.125 | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ### 55° Diamond Inserts *Negative (DNGA)* | | | S
Steel | | Cast
Iron | | | | esista
Alloy | | | | ened
eel | | | | Dimer | nsions (i | nches) | | |--------------------------------------|---|------------|----------|--------------|----------|----------|--------|-----------------|----------|------------|-----------|-------------|----------|---------------------------------|-------------------|-------|-----------|--------|-------| | | | M | | K | | | | S | | | | Н | | | | | | | | | Shape:
55° Diamond | Part Number
ANSI | 009-5M | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-5M | 00Z-9M | 1-NILASX | WG-300 | 009-5W | L-NILASX | GEM-8 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | DNGA-322 | • | A | • | • | • | • | A | * | • | • | * | | DNGA-110308 | 0.375 | 0.458 | 0.125 | 0.150 | 0.031 | | | DNGA-323 | • | | • | • | • | • | | * | • | • | * | | DNGA-110312 | 0.375 | 0.458 | 0.125 | 0.150 | 0.047 | | | DNGA-324 | • | A | • | • | • | • | A | * | • | • | * | A | DNGA-110316 | 0.375 | 0.458 | 0.125 | 0.150 | 0.062 | | | DNGA-332 | • | | • | • | • | • | | * | • | • | * | | DNGA-110408 | 0.375 | 0.458 | 0.187 | 0.150 | 0.031 | | | DNGA-431 | • | A | • | • | • | • | A | * | • | • | * | | DNGA-150404 | 0.500 | 0.610 | 0.187 | 0.203 | 0.015 | | | DNGA-432 | • | | • | • | • | • | A | * | • | • | * | A | DNGA-150408 | 0.500 | 0.610 | 0.187 | 0.203 | 0.031 | | | DNGA-433 | • | A | • | • | • | • | A | * | • | • | * | | DNGA-150412 | 0.500 | 0.610 | 0.187 | 0.203 | 0.047 | | | DNGA-434 | • | A | • | • | • | • | A | * | • | • | * | A | DNGA-150416 | 0.500 | 0.610 | 0.187 | 0.203 | 0.062 | | | DNGA-443 | • | | • | • | • | • | | * | • | • | * | | DNGA-150612 | 0.500 | 0.610 | 0.250 | 0.203 | 0.047 | | | DNGA-543 | • | | • | • | • | • | | * | • | • | * | | DNGA-190612 | 0.625 | 0.763 | 0.250 | 0.250 | 0.047 | | CERAMIC CLASSIFICATION: Whisker Cera | mic Phase-Toughened Silicon Nitride Alumina TiC | | First | Choice | ♦ S | econd Ch | noice | Alter | rnative | ▲ I | nterrupte | ed/Milling | • | Grade descriptions — pages T 42 | | | | | | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ### 55° Diamond Inserts *Negative (DNGN)* | | | S
Steel
M | | Cast
Iron
K | | | | esista
Alloy:
S | | | St | ened
eel | | | | Dimensio | ns (inches |) | |---------------------------------------|---|-----------------|----------|-------------------|----------|----------|--------|-----------------------|----------|-------------|----------|-------------|----------|---------------------------------|-------------------|----------|------------|-------| | Shape:
55° Diamond | Part Number
ANSI | WG-600 | WG-600 | GSN100 | XSYTIN-1 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | т | R | | | DNGN-322 | • | A | • | • | • | • | lack | * | • | • | * | A | DNGN-110308 | 0.375 | 0.458 | 0.125 | 0.031 | | | DNGN-323 | • | | • | • | • | • | | * | • | • | * | | DNGN-110312 | 0.375 | 0.458 | 0.125 | 0.047 | | | DNGN-324 | • | | • | • | • | • | | * | • | • | * | | DNGN-110316 | 0.375 | 0.458 | 0.125 | 0.062 | | | DNGN-432 | • | | • | • | • | • | | * | • | • | * | | DNGN-150408 | 0.500 | 0.610 | 0.187 | 0.031 | | | DNGN-433 | • | | • | • | • | • | | * | • | • | * | | DNGN-150412 | 0.500 | 0.610 | 0.187 | 0.047 | | | DNGN-434 | • | | • | • | • | • | | * | • | • | * | | DNGN-150416 | 0.500 | 0.610 | 0.187 | 0.062 | | CERAMIC CLASSIFICATION: Whisker Ceram | nic Phase-Toughened Silicon Nitride Alumina TiC | | First (| hoice 4 | Se | cond Cho | oice | Altern | native 🛚 | ▲ In | terrupte | d/Milling | * | Grade descriptions — pages T 42 | | | | | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. See pages ATI 22-23 for
information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ### **Round Inserts** *Negative (RNGA)* | | | S
Steel | | Cast
Iron | | | | esista
Alloy | | | St | lened
eel | | | Din | nensions (inc | hes) | |-----------------|---------------------|------------|----------|--------------|----------|--------|--------|-----------------|----------|--------|----------|--------------|----------|--------------------|-------------------|---------------|-------| | | | M | | K | | | : | 5 | | | | H | | | | | | | Shape:
Round | Part Number
ANSI | 009-5W | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-5W | MG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | Т | D | | | RNGA-32 | • | A | • | • | • | • | A | * | • | • | * | A | RNGA-090300 | 0.375 | 0.125 | 0.150 | | | RNGA-33 | • | | • | • | • | • | | * | • | • | * | | RNGA-090400 | 0.375 | 0.187 | 0.150 | | | RNGA-43 | • | | • | • | • | • | | * | • | • | * | | RNGA-120400 | 0.500 | 0.187 | 0.203 | | | RNGA-45 | • | | • | • | • | • | | * | • | • | * | | RNGA-120700 | 0.500 | 0.312 | 0.203 | | | RNGA-55 | • | | • | • | • | • | A | * | • | • | * | A | RNGA-150700 | 0.625 | 0.312 | 0.250 | | | RNGA-65 | • | | • | • | • | • | | * | • | • | * | | RNGA-190700 | 0.750 | 0.312 | 0.312 | | | RNGA-85 | • | | • | • | • | • | A | * | • | * | * | A | RNGA-250700 | 1.000 | 0.312 | 0.359 | See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. Grade descriptions — pages T 42 ### **Round Inserts** *Negative (RNGN)* | | | S
Steel | | Cast
Iron | | | Super | esista
Alloy | | | St | lened
eel | | | Dimension | ıs (inches) | |-----------------|---------------------|------------|--------|--------------|----------|--------|--------|-----------------|----------|--------|----------|--------------|-------|--------------------|-------------------|-------------| | | | M | | K | | | | S | | | | Н | | | | | | Shape:
Round | Part Number
ANSI | MG-600 | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-5W | 00Z-5M | L-NILASX | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | т | | | RNGN-32 | • | | • | • | • | • | | * | • | • | * | | RNGN-090300 | 0.375 | 0.125 | | | RNGN-33 | • | | • | • | • | • | | * | • | • | * | | RNGN-090400 | 0.375 | 0.187 | | | RNGN-42 | • | | • | • | • | • | | * | • | • | * | | RNGN-120300 | 0.500 | 0.125 | | | RNGN-43 | • | | • | • | • | • | | * | • | • | * | | RNGN-120400 | 0.500 | 0.187 | | | RNGN-45 | • | | • | • | • | • | | * | • | • | * | | RNGN-120700 | 0.500 | 0.312 | | | RNGN-55 | • | | • | • | • | • | | * | • | • | * | | RNGN-150700 | 0.625 | 0.312 | | | RNGN-64 | • | | • | • | • | • | | * | • | • | * | | RNGN-190600 | 0.750 | 0.250 | | | RNGN-65 | • | | • | • | • | • | | * | • | • | * | | RNGN-190700 | 0.750 | 0.312 | | | RNGN-84 | • | | • | • | • | • | | * | • | • | * | | RNGN-250600 | 1.000 | 0.250 | | | RNGN-85 | • | | • | • | • | • | | * | • | • | * | | RNGN-250700 | 1.000 | 0.312 | | | RNGN-86 | ♦ | | • | • | • | • | | * | • | • | * | | RNGN-250900 | 1.000 | 0.375 | | | RNGN-106 | • | | • | • | • | • | | * | • | ♦ | * | | RNGN-310900 | 1.250 | 0.375 | See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. # **Square Inserts**Negative (SNGA) | | | S
Steel | | Cast | | | eat-R
Super | Alloy | | | | eel | | | | Dime | nsions (i | inches) | | |-----------------------------------|---------------------|------------|----------|----------|----------|---------|----------------|----------|----------|--------|----------|-----------|-------|---------------------------------|-------------------|-------|-----------|---------|-------| | Shape:
Square | Part Number
ANSI | MG-600 | 009-5M | GSN100 | XSYTIN-1 | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | | SNGA-432 | • | A | • | • | • | • | | * | • | • | * | | SNGA-120408 | 0.500 | 0.500 | 0.187 | 0.203 | 0.031 | | | SNGA-433 | • | | • | • | • | • | | * | • | • | * | | SNGA-120412 | 0.500 | 0.500 | 0.187 | 0.203 | 0.047 | | | SNGA-434 | • | A | • | • | • | • | | * | • | • | * | | SNGA-120416 | 0.500 | 0.500 | 0.187 | 0.203 | 0.062 | | | SNGA-452 | • | | • | • | • | • | | * | • | • | * | | SNGA-120708 | 0.500 | 0.500 | 0.312 | 0.203 | 0.031 | | | SNGA-453 | • | | • | • | • | • | A | * | • | • | * | | SNGA-120712 | 0.500 | 0.500 | 0.312 | 0.203 | 0.047 | | | SNGA-454 | • | | • | • | • | • | | * | • | • | * | | SNGA-120716 | 0.500 | 0.500 | 0.312 | 0.203 | 0.062 | | | SNGA-542 | • | | • | • | • | • | | * | • | • | * | | SNGA-150608 | 0.625 | 0.625 | 0.250 | 0.250 | 0.031 | | | SNGA-543 | • | | • | • | • | • | A | * | • | • | * | | SNGA-150612 | 0.625 | 0.625 | 0.250 | 0.250 | 0.047 | | | SNGA-544 | • | | • | • | • | • | | * | • | • | * | | SNGA-150616 | 0.625 | 0.625 | 0.250 | 0.250 | 0.062 | | | SNGA-642 | • | | • | • | • | • | | * | • | • | * | | SNGA-190608 | 0.750 | 0.750 | 0.250 | 0.312 | 0.031 | | | SNGA-643 | • | A | • | • | • | • | | * | • | • | * | | SNGA-190612 | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | | SNGA-644 | • | | • | • | • | • | | * | • | • | * | | SNGA-190616 | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | ERAMIC CLASSIFICATION: Whisker Co | | iC | | Choice 4 | Se | cond Ch | oice • | Alter | native . | ▲ Ir | terrupte | d/Milling | | Grade descriptions — pages T 42 | | | | | | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ $See \ pages\ ATI\ 22-23\ for\ information\ on\ edge\ preps.\ For\ availability\ and\ any\ application\ concerns,\ please\ contact\ Greenleaf\ Technical\ Service.$ # **Square Inserts**Negative (SNGN) | | | S
Steel | | Cast
Iron | | | eat-R
Super | Alloy | | | St | lened
eel | | | | Dimensio | ns (inches | ;) | |------------------|---------------------|------------|----------|--------------|----------|--------|----------------|----------|----------|--------|--------|--------------|----------|--------------------|-------------------|----------|------------|------------| | | | M | | K | | | | S | | | | Н | | | | | | | | Shape:
Square | Part Number
ANSI | WG-600 | 009-5M | GSN100 | XSYTIN-1 | WG-300 | 009-5M | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | R | | | SNGN-322 | • | A | • | • | • | • | A | * | • | • | * | A | SNGN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SNGN-333 | • | | • | • | • | • | | * | • | • | * | | SNGN-090412 | 0.375 | 0.375 | 0.187 | 0.047 | | | SNGN-432 | • | A | • | • | • | • | A | * | • | • | * | A | SNGN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SNGN-433 | • | | • | • | • | • | | * | • | • | * | | SNGN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SNGN-434 | • | | • | • | • | • | A | * | • | • | * | A | SNGN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | | SNGN-452 | • | | • | • | • | • | | * | • | • | * | | SNGN-120708 | 0.500 | 0.500 | 0.312 | 0.031 | | | SNGN-453 | • | | • | • | • | • | | * | • | • | * | | SNGN-120712 | 0.500 | 0.500 | 0.312 | 0.047 | | | SNGN-454 | • | | • | • | • | • | | * | • | • | * | | SNGN-120716 | 0.500 | 0.500 | 0.312 | 0.062 | | | SNGN-542 | • | | • | • | • | • | | * | • | • | * | | SNGN-150608 | 0.625 | 0.625 | 0.250 | 0.031 | | | SNGN-543 | • | | • | • | • | • | | * | • | • | * | | SNGN-150612 | 0.625 | 0.625 | 0.250 | 0.047 | | | SNGN-544 | • | | • | • | • | • | | * | • | • | * | | SNGN-150616 | 0.625 | 0.625 | 0.250 | 0.062 | | | SNGN-6416 | • | A | • | • | • | • | A | * | • | • | * | A | SNGN-190663 | 0.750 | 0.750 | 0.250 | 0.250 | | | SNGN-642 | • | | • | • | • | • | | * | • | • | * | | SNGN-190608 | 0.750 | 0.750 | 0.250 | 0.031 | | | SNGN-643 | • | | • | • | • | • | | * | • | • | * | | SNGN-190612 | 0.750 | 0.750 | 0.250 | 0.047 | | | SNGN-644 | • | | • | • | • | • | A | * | • | • | * | A | SNGN-190616 | 0.750 | 0.750 | 0.250 | 0.062 | | | SNGN-652 | • | | • | • | • | • | | * | • | • | * | | SNGN-190708 | 0.750 | 0.750 | 0.312 | 0.031 | | | SNGN-653 | • | | • | • | • | • | A | * | • | • | * | A | SNGN-190712 | 0.750 | 0.750 | 0.312 | 0.047 | | | SNGN-654 | • | | • | • | • | • | | * | • | • | * | | SNGN-190716 | 0.750 | 0.750 | 0.312 | 0.062 | | | SNGN-655 | • | | • | • | • | • | | * | • | • | * | | SNGN-190720 | 0.750 | 0.750 | 0.312 | 0.078 | | | SNGN-656 | • | | • | • | • | • | | * | • | • | * | | SNGN-190723 | 0.750 | 0.750 | 0.312 | 0.094 | | | SNGN-866 | • | | • | • | • | • | | * | • | • | * | A | SNGN-250924 | 1.000 | 1.000 | 0.375 | 0.094 | Grade descriptions — pages T 42 $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ ### Triangle Inserts Negative (TNGA) | | | S
Steel | | Cast
Iron | | | eat-R
Super | | | | St | ened
eel | | | | Dimer | nsions (i | nches) | | |--------------------------------------|---|------------|----------|--------------|-------------|---------|----------------|----------|----------|--------|----------|-------------|----------|---------------------------------|-------------------|-------|-----------|--------|-------| | Shape:
Triangle | Part Number
ANSI | MG-600 × | 009-5M | GSN100 | XSYTIN-1 | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | | TNGA-331 | • | A | • | • | • | • | A | * | • | • | * | A | TNGA-160404 | 0.375 | 0.650 | 0.187 | 0.150 | 0.015 | | | TNGA-332 | * | | • | • | • | • | | * | • | • | * | | TNGA-160408 | 0.375 | 0.650
| 0.187 | 0.150 | 0.031 | | | TNGA-333 | • | A | • | • | • | • | A | * | • | • | * | lack | TNGA-160412 | 0.375 | 0.650 | 0.187 | 0.150 | 0.047 | | | TNGA-334 | • | | • | • | • | • | | * | • | • | * | | TNGA-160416 | 0.375 | 0.650 | 0.187 | 0.150 | 0.062 | | | TNGA-432 | • | A | • | • | • | • | A | * | • | • | * | A | TNGA-220408 | 0.500 | 0.866 | 0.187 | 0.203 | 0.031 | | | TNGA-433 | • | | • | • | • | • | | * | • | • | * | | TNGA-220412 | 0.500 | 0.866 | 0.187 | 0.203 | 0.047 | | | TNGA-434 | • | | • | • | • | • | | * | • | • | * | | TNGA-220416 | 0.500 | 0.866 | 0.187 | 0.203 | 0.062 | | | TNGA-454 | * | | • | • | • | • | | * | • | • | * | | TNGA-220716 | 0.500 | 0.866 | 0.312 | 0.203 | 0.062 | | CERAMIC CLASSIFICATION: Whisker Cera | mic Phase-Toughened Silicon Nitride Alumina TiC | | First | Choice • | ▶ Se | cond Ch | oice | Alter | native 🛚 | L In | terrupte | d/Milling | | Grade descriptions — pages T 42 | | | | | | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ## Triangle Inserts Negative (TNGN) | | | S
Steel | | Cast
Iron
K | | | | esista
Alloy | | | St | lened
eel
H | | | | Dimensio | ns (inches |) | |--------------------|---------------------|------------|----------|-------------------|----------|--------|--------|-----------------|----------|--------|--------|-------------------|-------|--------------------|-------------------|----------|------------|-------| | Shape:
Triangle | Part Number
ANSI | MG-600 | 009-5M | GSN100 | XSYTIN-1 | WG-300 | 009-5M | 00Z-9M | XSYTIN-1 | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | R | | | TNGN-222 | • | | • | • | • | • | | * | • | • | * | | TNGN-110308 | 0.250 | 0.433 | 0.125 | 0.031 | | | TNGN-321 | • | | • | • | • | • | | * | • | • | * | | TNGN-160304 | 0.375 | 0.650 | 0.125 | 0.015 | | | TNGN-322 | • | | • | • | • | • | A | * | • | • | * | | TNGN-160308 | 0.375 | 0.650 | 0.125 | 0.031 | | | TNGN-331 | • | | • | • | • | • | | * | • | • | * | | TNGN-160404 | 0.375 | 0.650 | 0.187 | 0.015 | | | TNGN-332 | • | | • | • | • | • | | * | • | • | * | | TNGN-160408 | 0.375 | 0.650 | 0.187 | 0.031 | | | TNGN-333 | • | | • | • | • | • | | * | • | • | * | | TNGN-160412 | 0.375 | 0.650 | 0.187 | 0.047 | | | TNGN-334 | • | | • | • | • | • | | * | • | • | * | | TNGN-160416 | 0.375 | 0.650 | 0.187 | 0.062 | | | TNGN-431 | • | | • | • | • | • | | * | • | • | * | lack | TNGN-220404 | 0.500 | 0.866 | 0.187 | 0.015 | | | TNGN-432 | • | | • | • | • | • | | * | • | • | * | | TNGN-220408 | 0.500 | 0.866 | 0.187 | 0.031 | | | TNGN-433 | • | | • | | • | • | | * | • | • | * | | TNGN-220412 | 0.500 | 0.866 | 0.187 | 0.047 | | | TNGN-434 | • | | • | • | • | • | | * | • | • | * | lack | TNGN-220416 | 0.500 | 0.866 | 0.187 | 0.062 | | | TNGN-438 | • | | • | • | • | • | | * | • | • | * | | TNGN-220432 | 0.500 | 0.866 | 0.187 | 0.125 | | | TNGN-452 | • | A | • | • | • | • | | * | • | • | * | | TNGN-220708 | 0.500 | 0.866 | 0.312 | 0.031 | | | TNGN-453 | • | | • | • | • | • | | * | • | • | * | | TNGN-220712 | 0.500 | 0.866 | 0.312 | 0.047 | | | TNGN-454 | • | A | • | • | • | • | | * | • | • | * | | TNGN-220716 | 0.500 | 0.866 | 0.312 | 0.062 | | | TNGN-543 | • | | • | • | • | • | | * | • | • | * | | TNGN-270612 | 0.625 | 1.083 | 0.250 | 0.047 | | | TNGN-544 | • | A | • | • | • | • | | * | • | • | * | | TNGN-270616 | 0.625 | 1.083 | 0.250 | 0.062 | | | TNGN-548 | • | | • | • | • | • | | * | • | • | * | | TNGN-270632 | 0.625 | 1.083 | 0.250 | 0.125 | | | TNGN-666 | • | A | • | • | • | • | | * | • | • | * | | TNGN-330924 | 0.750 | 1.299 | 0.375 | 0.094 | | | TNGN-868 | • | | • | • | • | • | | * | • | • | * | | TNGN-440932 | 1.000 | 1.732 | 0.375 | 0.125 | Grade descriptions — pages T 42 CERAMIC CLASSIFICATION: Whister Ceramic Phase-Toughened Silicon Nutride Alumina TiC First Choice ◆ For additional nose radii and available edge preps, please contact Greenleaf Technical Service. $See \ pages \ ATI \ 22-23 \ for \ information \ on \ edge \ preps. \ For \ availability \ and \ any \ application \ concerns, \ please \ contact \ Greenleaf \ Technical \ Service.$ ## 35° Diamond Inserts Negative (VNGA) | | | S
Steel | | Cast
Iron
K | | | eat-R
Super | | | | | lened
eel
H | | | | Dime | nsions (i | inches) | | |-----------------------|---------------------|------------|----------|-------------------|----------|--------|----------------|----------|----------|--------|--------|-------------------|----------|--------------------|-------------------|-------|-----------|---------|-------| | Shape:
35° Diamond | Part Number
ANSI | 009-5W | WG-600 | GSN100 | XSYTIN-1 | WG-300 | 009-5W | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | VNGA-332 | • | A | • | • | • | • | A | * | • | • | * | A | VNGA-160408 | 0.375 | 0.654 | 0.187 | 0.150 | 0.031 | | 0 | VNGA-333 | • | | • | • | • | • | | * | • | • | * | | VNGA-160412 | 0.375 | 0.654 | 0.187 | 0.150 | 0.047 | | | VNGA-432 | • | A | • | • | • | • | A | * | • | • | * | A | VNGA-220408 | 0.500 | 0.872 | 0.187 | 0.203 | 0.031 | | | VNGA-436 | • | | • | • | • | • | | * | • | • | * | | VNGA-220424 | 0.500 | 0.872 | 0.187 | 0.203 | 0.094 | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ # **Trigon Inserts**Negative (WNGA) | | | S
Steel | | Cast
Iron
K | | | | esista
Alloy | | | St | lened
eel
H | | | | Dimer | nsions (i | nches) | | |---------------------------------------|---|------------|----------|-------------------|-------------|---------|--------|-----------------|----------|--------|----------|-------------------|----------|---------------------------------|-------------------|-------|-----------|--------|-------| | Shape:
Trigon | Part Number
ANSI | 009-5W | WG-600 | GSN100 | XSYTIN-1 | WG-300 | 009-5M | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | D | R | | _ | WNGA-331 | • | A | • | • | • | • | A | * | • | • | * | A | WNGA-060404 | 0.375 | 0.257 | 0.187 | 0.152 | 0.015 | | | WNGA-332 | • | | • | • | • | • | | * | • | • | * | | WNGA-060408 | 0.375 | 0.257 | 0.187 | 0.152 | 0.031 | | | WNGA-333 | • | A | • | • | • | • | A | * | • | • | * | A | WNGA-060412 | 0.375 | 0.257 | 0.187 | 0.152 | 0.047 | | | WNGA-431 | • | A | • | • | • | • | A | * | • | • | * | | WNGA-080404 | 0.500 | 0.342 | 0.187 | 0.203 | 0.015 | | | WNGA-432 | • | A | • | • | • | • | A | * | • | • | * | | WNGA-080408 | 0.500 | 0.342 | 0.187 | 0.203 | 0.031 | | | WNGA-433 | • | | • | • | • | • | | * | • | • | * | | WNGA-080412 | 0.500 | 0.342 | 0.187 | 0.203 | 0.047 | | CERAMIC CLASSIFICATION: Whisker Ceram | mic Phase-Toughened Silicon Nitride Alumina TiC | | First (| Choice 4 | ▶ Se | cond Ch | oice | Alter | native 🛚 | ▲ Ir | terrupte | d/Milling | * | Grade descriptions — pages T 42 | | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC First Choice ◆ For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ### 80° Diamond Inserts Positive (CPGN) | | | S
Steel | | Cast
Iron | | | eat-R
Super | | | | St | ened
eel | | | | Dimensio | ns (inches |) | |-------------------------------------|---------------------|------------|----------|--------------|----------|--------|----------------|----------|-----------|--------|--------|-------------|----------|--|-------------------|----------|------------|-------| | Shape:
80° Diamond | Part Number
ANSI | WG-600 × | 009-5W | GSN100 | XSYTIN-1 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | Т | R | | | CPGN-321 | • | A | • | • | • | • | A | * | • | • | * | A | CPGN-090304 | 0.375 | 0.380 | 0.125 | 0.015 | | | CPGN-322 | • | | • | • | • | • | A | * | • | • | * | | CPGN-090308 | 0.375 | 0.380 | 0.125 | 0.031 | | | CPGN-323 | • | A | • | • | • | • | | * | • | • | * | | CPGN-090312 | 0.375 | 0.380 | 0.125 | 0.047 | | | CPGN-422 | • | | • | • | • | • | A | * | • | • | * | | CPGN-120308 | 0.500 | 0.508 | 0.125 | 0.031 | | | CPGN-424 | • | A | • | • | • | • | | * | • | • | * | | CPGN-120316 | 0.500 | 0.508 | 0.125 | 0.062 | | | CPGN-432 | • | | • | • | • | • | | * | • | • | * | | CPGN-120408 | 0.500 | 0.508 | 0.187 | 0.031 | | | CPGN-433 | • | | • | • | • | • | | * | • | • | * | | CPGN-120412 | 0.500 | 0.508 | 0.187 | 0.047 | | CFRAMIC CLASSIFICATION: Whisker Cer | CPGN-434 | • | | hoice 4 | • | • | oice • | | •• native | • | • | d/Milling | | CPGN-120416 Grade descriptions — pages T 42 | 0.500 | 0.508 | 0.187 | 0.062 | $For additional \ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ ### **Round Inserts** Positive Flat Top (RPGN) | | | S
Steel | | Cast
Iron
K | | | eat-R
Super | | | | St | lened
eel
H | | | Dimensio | ns (inches) | |-----------------|---------------------|------------|----------|-------------------|----------|--------|----------------|----------|----------|--------|--------|-------------------|----------|-----------------------------|-------------------|-------------| | Shape:
Round | Part Number
ANSI | 009-5W | WG-600 | GSN100 | XSYTIN-1 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | WG-600 | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | T | | | RPGN-32 | • | A | • | • | • | • | A
 * | • | • | * | A | RPGN-090300 | 0.375 | 0.125 | | | RPGN-43 | • | | • | • | • | • | | * | • | • | * | | RPGN-120400 | 0.500 | 0.187 | | | | | | Shaira 4 | | | in A | | nativo | | | od/Million | | Code descriptions asset (1) | | | # **Square Inserts**Positive Flat Top (SPGN) | | | S
Steel | | Cast
Iron
K | | | eat-R
Super | | | | St | ened
eel | | | | Dimensio | ns (inches | ;) | |------------------|---------------------|------------|----------|-------------------|----------|--------|----------------|----------|----------|--------|--------|-------------|----------|--------------------|-------------------|----------|------------|-------| | Shape:
Square | Part Number
ANSI | 009-5W | 009-5M | GSN100 | XSYTIN-1 | WG-300 | MG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | т | R | | | SPGN-322 | • | A | • | • | • | • | A | * | • | • | * | lack | SPGN-090308 | 0.375 | 0.375 | 0.125 | 0.031 | | | SPGN-422 | • | | • | • | • | • | | * | • | • | * | | SPGN-120308 | 0.500 | 0.500 | 0.125 | 0.031 | | | SPGN-423 | • | | • | • | • | • | | * | • | • | * | | SPGN-120312 | 0.500 | 0.500 | 0.125 | 0.047 | | | SPGN-432 | • | | • | • | • | • | | * | • | • | * | | SPGN-120408 | 0.500 | 0.500 | 0.187 | 0.031 | | | SPGN-433 | • | | • | • | • | • | | * | • | • | * | | SPGN-120412 | 0.500 | 0.500 | 0.187 | 0.047 | | | SPGN-434 | • | | • | • | • | • | | * | • | • | * | | SPGN-120416 | 0.500 | 0.500 | 0.187 | 0.062 | | | SPGN-632 | • | A | • | • | • | • | A | * | • | • | * | A | SPGN-190408 | 0.750 | 0.750 | 0.187 | 0.031 | | | SPGN-633 | • | | • | • | • | • | | * | • | • | * | | SPGN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPGN-634 | • | | • | • | • | • | | * | • | • | * | | SPGN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPGN-642 | • | | • | • | • | • | | * | • | • | * | | SPGN-190608 | 0.750 | 0.750 | 0.250 | 0.031 | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ### Triangle Inserts Positive Flat Top (TP) | | | S
Steel | | Cast
Iron
K | | | eat-R
Super | | | | St | lened
eel
H | | | | Dime | nsions (i | nches) | | |--------------------------------------|---|------------|----------|-------------------|----------|---------|----------------|----------|----------|--------|----------|-------------------|----------|---------------------------------|-------------------|-------|-----------|--------|-------| | Shape:
Triangle | Part Number
ANSI | 009-5M | MG-600 | GSN100 | XSYTIN-1 | WG-300 | 009-5M | MG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | TP-41 | • | A | • | • | • | • | A | * | • | • | * | A | TP-41 | 0.250 | 0.433 | 0.093 | 0.137 | 0.015 | | | TP-42 | • | | • | • | • | • | | * | • | • | * | | TP-42 | 0.250 | 0.433 | 0.093 | 0.137 | 0.031 | | | TP-62 | • | | • | • | • | • | | * | • | • | * | | TP-62 | 0.375 | 0.650 | 0.125 | 0.163 | 0.031 | | | TP-64 | • | | • | • | • | • | | * | • | • | * | | TP-64 | 0.375 | 0.650 | 0.125 | 0.163 | 0.062 | | | TP-82 | • | | • | • | • | • | | * | • | • | * | | TP-82 | 0.500 | 0.866 | 0.187 | 0.203 | 0.031 | | CERAMIC CLASSIFICATION: Whisker Cera | mic Phase-Toughened Silicon Nitride Alumina TiC | | First | Choice | Se | cond Ch | oice • | Alter | native . | ▲ Ir | terrupte | d/Milling | | Grade descriptions — pages T 42 | | | | | | $For additional\ nose\ radii\ and\ available\ edge\ preps,\ please\ contact\ Greenleaf\ Technical\ Service.$ See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ## Triangle Inserts Positive Flat Top (TPGA) | | | S
Steel
M | | Cast
Iron
K | | | | esista
Alloy | | | St | lened
eel
H | | | | Dime | nsions (i | nches) | | |---------------------------------------|---|-----------------|----------|-------------------|-------------|----------|--------|-----------------|----------|--------|----------|-------------------|----------|---------------------------------|-------------------|-------|-----------|--------|-------| | Shape:
Triangle | Part Number
ANSI | 009-5M | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-9M | MG-700 | XSYTIN-1 | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | Part Number
ISO | A _{I.C.} | L | T | D | R | | | TPGA-321 | • | A | • | • | • | • | A | * | • | • | * | A | TPGA-160304 | 0.375 | 0.650 | 0.125 | 0.150 | 0.015 | | | TPGA-322 | • | | • | • | • | • | | * | • | • | * | | TPGA-160308 | 0.375 | 0.650 | 0.125 | 0.150 | 0.031 | CERAMIC CLASSIFICATION: Whisker Ceran | nic Phase-Toughened Silicon Nitride Alumina TiC | | First (| hoice 4 | ▶ Se | cond Cho | oice | Alter | native . | ▲ Ir | terrupte | d/Milling | | Grade descriptions — pages T 42 | | 600 | | | | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ### Triangle Inserts Positive Flat Top (TPGN) | | | S
Steel | | Cast
Iron | | | eat-R
Super | | | | St | lened
eel | | | | Dimensio | ns (inches | :) | |----------|-------------|------------|----------|--------------|----------|--------|----------------|------------------|----------|--------|--------|--------------|------------------|-------------|-------------------|----------|------------|-------| | Shape: | Part Number | M | 9 | K | Ξ | 9 | 2 | و | <u>-</u> | 9 | | <u> </u> | | Part Number | | | | | | Triangle | ANSI | 009-5W | 009-5W | GSN100 | XSYTIN-1 | WG-300 | 009-5W | 00Z-5M | 1-NILASX | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | A _{I.C.} | L | T | R | | | TPGN-221 | • | | • | • | • | • | \blacktriangle | * | • | • | * | \blacktriangle | TPGN-110304 | 0.250 | 0.433 | 0.125 | 0.015 | | | TPGN-222 | • | | • | • | • | • | | * | • | • | * | | TPGN-110308 | 0.250 | 0.433 | 0.125 | 0.031 | | | TPGN-321 | • | | • | • | • | • | A | * | • | • | * | | TPGN-160304 | 0.375 | 0.650 | 0.125 | 0.015 | | | TPGN-322 | • | | • | • | • | • | | * | • | • | * | | TPGN-160308 | 0.375 | 0.650 | 0.125 | 0.031 | | | TPGN-323 | • | | • | • | • | • | A | * | • | • | * | | TPGN-160312 | 0.375 | 0.650 | 0.125 | 0.047 | | | TPGN-324 | • | | • | • | • | • | A | * | • | • | * | | TPGN-160316 | 0.375 | 0.650 | 0.125 | 0.062 | | | TPGN-431 | • | A | • | • | • | • | A | * | • | • | * | A | TPGN-220404 | 0.500 | 0.866 | 0.187 | 0.015 | | | TPGN-432 | • | | • | • | • | • | A | * | • | • | * | | TPGN-220408 | 0.500 | 0.866 | 0.187 | 0.031 | | | TPGN-433 | • | A | • | • | • | • | | * | • | • | * | | TPGN-220412 | 0.500 | 0.866 | 0.187 | 0.047 | | | TPGN-434 | • | | • | • | • | • | | * | • | • | * | | TPGN-220416 | 0.500 | 0.866 | 0.187 | 0.062 | For additional nose radii and available edge preps, please contact Greenleaf Technical Service. ### Industry-Standard Toolholders for Carbide Inserts Greenleaf manufactures a complete line of industry-standard toolholders in conformance with ANSI specifications in 4140 and 4150 alloy steel, hardened up to 42 HRc and oxide coated. #### Greenleaf Tune-Up Kits A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ### Industry-Standard Toolholder Identification System The angles shown in parentheses are the angles as shown in the ANSI standard. [†]Greenleaf standard. All toolholders are shipped qualified over insert gage radius to $\pm .003\mbox{"}$ on C and F dimensions as standard. Some toolholders are qualifiable on length only (C dimen- All toolholders to be qualified other than above should be designated with the appropriate letter under heading "Shank Qualifications." [†]Greenleaf standard. ### **Pictorial Index** #### 80° Diamond - Negative #### G-MCGNR/L Style G 80° Diamond Negative Rake 0° Lead page: T 66 #### G-MCKNR/L Style K 80° Diamond (Using 100° Corner) Negative Rake 15° Lead page: T66 #### G-MCLNR/L Style L 80° Diamond Negative Rake 5° Reverse Lead **page: T 67** #### G-MCRNR/L Style R 80° Diamond (Using 100° Corner) Negative Rake 15° Lead page: T 67 ### 55° Diamond – Negative #### G-MDJNR/L Style J 55° Diamond Negative Rake 3° Reverse Lead page: T 68 #### G-MDPNN Style P 55° Diamond Negative Rake 27° 30' Lead **page: T 68** #### **Round – Negative** #### G-MRGNR/L Style G Round Negative Rake **page: T69** #### **Square** – **Negative** #### G-MSBNR/L Style B Square Negative Rake 15° Lead **page: T70** #### G-MSDNN Style D Square Negative Rake 45° Lead **page: T71** ### G-MSKNR/L Style K Square Negative Rake 15° Lead **page: T71** #### G-MSRNR/L Style R Square Negative Rake 15° Lead **page: T72** #### G-MSSNR/L Style S Square Negative Rake 45° Lead **page: T72** ### Triangle – Negative #### G-MTANR/L Style A Triangle Negative Rake 0° Lead **page: T73** #### **G-MTENNS** Style E Triangle Negative Rake 30° Lead **page: T73** #### G-MTFNR/L Style F Triangle Negative Rake 0° Lead page: T74 #### G-MTGNR/L Style G Triangle Negative Rake O° Lead **page: T75** #### **G-MTJNRS** Style J Triangle Negative Rake 3° Reverse Lead **page: T75** #### G-MTLNR/L Style L Triangle Negative Rake 5° Reverse Lead **page: T76** ### 35° Diamond – Negative #### G-MVJNR/L Style J 35° Diamond Negative Rake 3° Reverse Lead *page: T77* #### G-MVTNR/L Style T 35° Diamond Negative Rake 27° 30' Lead *page: T77* #### G-MVVNN Style V 35° Diamond Negative Rake 10°30' Reverse Lead
page: 178 ### Trigon – Negative #### G-MWLNR/L Style L Trigon Negative Rake 5° Reverse Lead **page: 178** #### 80° Diamond – Positive #### G-CCRPR/L Style R 80° Diamond (Using 100° Corner) Positive Rake 15° Lead page: T79 #### **Square – Positive** #### G-CSKPR/L Style K Square Positive Rake 15° Lead **page: T80** #### **Triangle – Positive** #### G-CTAPR/L Style A Triangle Positive Rake 0° Lead page: T 81 ### **Radius Forming** GSRN Style GSRN page: T 82 ### **Quick-Change Toolholders** #### MCLNR/L 80° Diamond Negative Rake 5° Reverse Lead C6 & C8 Tool Heads **page: T84** #### MRGNR/L Round Negative Rake C6 & C8 Tool Heads page: 784 #### CRGPR/L 45° Grooving/Profiling Replaceable Nest *page: T85* ### CRDPN Neutral Replaceable Nest page: T 85 ### G-MCGNR/L Style G / 80° Diamond / Negative Rake / 0° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|---------|------------|--------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MCGNR-12-4C | G-MCGNL-12-4C | CNMG-432 | 0.750 | 0.750 | 5.000 | 1.250 | 1.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | _ | | G-MCGNR-16-4D | G-MCGNL-16-4D | CNMG-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.250 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCGNR-85-4D | G-MCGNL-85-4D | CNMG-432 | 1.000 | 1.250 | 6.000 | 1.250 | 1.250 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCGNR-20-4D | G-MCGNL-20-4D | CNMG-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | _ | | G-MCGNR-24-4D | G-MCGNL-24-4D | CNMG-432 | 1.500 | 1.500 | 6.000 | 1.250 | 2.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCGNR-16-5D | G-MCGNL-16-5D | CNMG-543 | 1.000 | 1.000 | 6.000 | 1.500 | 1.250 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCGNR-85-5D | G-MCGNL-85-5D | CNMG-543 | 1.000 | 1.250 | 6.000 | 1.500 | 1.250 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCGNR-20-5D | G-MCGNL-20-5D | CNMG-543 | 1.250 | 1.250 | 6.000 | 1.500 | 1.500 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCGNR-24-5D | G-MCGNL-24-5D | CNMG-543 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCGNR-16-6D | G-MCGNL-16-6D | CNMG-643 | 1.000 | 1.000 | 6.000 | 1.500 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCGNR-85-6D | G-MCGNL-85-6D | CNMG-643 | 1.000 | 1.250 | 6.000 | 1.500 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCGNR-86-6D | G-MCGNL-86-6D | CNMG-643 | 1.000 | 1.500 | 6.000 | 1.500 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCGNR-20-6D | G-MCGNL-20-6D | CNMG-643 | 1.250 | 1.250 | 6.000 | 1.500 | 1.500 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCGNR-24-6D | G-MCGNL-24-6D | CNMG-643 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCGNR-24-8D | G-MCGNL-24-8D | CNMG-866 | 1.500 | 1.500 | 6.000 | 1.630 | 2.000 | CSN-846 | NL-810 | CL-24 | XNS-610 | TK-00718 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MCKNR/L Style K / 80° Diamond (Using 100° Corner) / Negative Rake / 15° Lead Neutral Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|---------|------------|---------|-------------|-----------------|-----------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MCKNR-12-4C | G-MCKNL-12-4C | CNMG-432 | 0.750 | 0.750 | 5.000 | 1.190 | 1.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCKNR-16-4D | G-MCKNL-16-4D | CNMG-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCKNR-20-4D | G-MCKNL-20-4D | CNMG-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCKNR-24-4D | G-MCKNL-24-4D | CNMG-432 | 1.500 | 1.500 | 6.000 | 1.190 | 2.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCKNR-16-5D | G-MCKNL-16-5D | CNMG-543 | 1.000 | 1.000 | 6.000 | 1.440 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-59 | TK-00548 | S-58 | CSN-543 | | G-MCKNR-85-5D | G-MCKNL-85-5D | CNMG-543 | 1.000 | 1.250 | 6.000 | 1.440 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-59 | TK-00548 | S-58 | CSN-543 | | G-MCKNR-86-5D | G-MCKNL-86-5D | CNMG-543 | 1.000 | 1.500 | 6.000 | 1.440 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-59 | TK-00548 | S-58 | CSN-543 | | G-MCKNR-20-5D | G-MCKNL-20-5D | CNMG-543 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | CSN-533 | NL-58 | CL-9 | XNS-59 | TK-00548 | S-58 | CSN-543 | | G-MCKNR-16-6D | G-MCKNL-16-6D | CNMG-643 | 1.000 | 1.000 | 6.000 | 1.440 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCKNR-85-6D | G-MCKNL-85-6D | CNMG-643 | 1.000 | 1.250 | 6.000 | 1.440 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCKNR-86-6D | G-MCKNL-86-6D | CNMG-643 | 1.000 | 1.500 | 6.000 | 1.440 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCKNR-20-6D | G-MCKNL-20-6D | CNMG-643 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCKNR-24-6D | G-MCKNL-24-6D | CNMG-643 | 1.500 | 1.500 | 6.000 | 1.440 | 2.000 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCKNR-24-8D | G-MCKNL-24-8D | CNMG-866 | 1.500 | 1.500 | 6.000 | 1.940 | 2.000 | CSN-846 | NL-810 | CL-24 | XNS-610 | TK-00718 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MCLNR/L Style L / 80° Diamond / Negative Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponent | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|---------|------------|---------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MCLNR-12-4C | G-MCLNL-12-4C | CNMG-432 | 0.750 | 0.750 | 5.000 | 1.190 | 1.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | _ | | G-MCLNR-16-4D | G-MCLNL-16-4D | CNMG-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCLNR-85-4D | G-MCLNL-85-4D | CNMG-432 | 1.000 | 1.250 | 6.000 | 1.190 | 1.250 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | - | | G-MCLNR-20-4D | G-MCLNL-20-4D | CNMG-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | _ | | G-MCLNR-24-4D | G-MCLNL-24-4D | CNMG-432 | 1.500 | 1.500 | 6.000 | 1.190 | 2.000 | CSN-433 | NL-46 | CL-20 | XNS-48 | TK-00545 | S-46 | _ | | G-MCLNR-16-5D | G-MCLNL-16-5D | CNMG-543 | 1.000 | 1.000 | 6.000 | 1.380 | 1.250 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCLNR-85-5D | G-MCLNL-85-5D | CNMG-543 | 1.000 | 1.250 | 6.000 | 1.380 | 1.250 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCLNR-86-5D | G-MCLNL-86-5D | CNMG-543 | 1.000 | 1.500 | 6.000 | 1.380 | 1.250 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCLNR-20-5D | G-MCLNL-20-5D | CNMG-543 | 1.250 | 1.250 | 6.000 | 1.380 | 1.500 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCLNR-24-5D | G-MCLNL-24-5D | CNMG-543 | 1.500 | 1.500 | 6.000 | 1.380 | 2.000 | CSN-533 | NL-58 | CL-12 | XNS-510 | TK-00547 | S-58 | CSN-543 | | G-MCLNR-16-6D | G-MCLNL-16-6D | CNMG-643 | 1.000 | 1.000 | 6.000 | 1.380 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCLNR-85-6D | G-MCLNL-85-6D | CNMG-643 | 1.000 | 1.250 | 6.000 | 1.380 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCLNR-86-6D | G-MCLNL-86-6D | CNMG-643 | 1.000 | 1.500 | 6.000 | 1.380 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCLNR-20-6D | G-MCLNL-20-6D | CNMG-643 | 1.250 | 1.250 | 6.000 | 1.380 | 1.500 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCLNR-24-6D | G-MCLNL-24-6D | CNMG-643 | 1.500 | 1.500 | 6.000 | 1.380 | 2.000 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCLNR-24-8D | G-MCLNL-24-8D | CNMG-866 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | CSN-846 | NL-810 | CL-24 | XNS-610 | TK-00718 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MCRNR/L Right-Hand Toolholder Shown | | | | | | | | | | | | | i iooiiioidei siit | | | |---------------|---------------|----------|-------|-------|-----------|---------|-------|---------|------------|---------|-------------|--------------------|-----------------|------------| | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MCRNR-12-4C | G-MCRNL-12-4C | CNMG-432 | 0.750 | 0.750 | 5.000 | 1.250 | 1.000 | CSN-433 | NL-46 | CL-9 | XNS-59 | TK-00549 | S-46 | - | | G-MCRNR-16-4D | G-MCRNL-16-4D | CNMG-432 |
1.000 | 1.000 | 6.000 | 1.250 | 1.250 | CSN-433 | NL-46 | CL-9 | XNS-59 | TK-00549 | S-46 | - | | G-MCRNR-20-4D | G-MCRNL-20-4D | CNMG-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | CSN-433 | NL-46 | CL-9 | XNS-59 | TK-00549 | S-46 | - | | G-MCRNR-24-4D | G-MCRNL-24-4D | CNMG-432 | 1.500 | 1.500 | 6.000 | 1.250 | 2.000 | CSN-433 | NL-46 | CL-9 | XNS-59 | TK-00549 | S-46 | - | | G-MCRNR-16-5D | G-MCRNL-16-5D | CNMG-543 | 1.000 | 1.000 | 6.000 | 1.340 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-510 | TK-00550 | S-58 | CSN-543 | | G-MCRNR-85-5D | G-MCRNL-85-5D | CNMG-543 | 1.000 | 1.250 | 6.000 | 1.340 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-510 | TK-00550 | S-58 | CSN-543 | | G-MCRNR-86-5D | G-MCRNL-86-5D | CNMG-543 | 1.000 | 1.500 | 6.000 | 1.340 | 1.250 | CSN-533 | NL-58 | CL-9 | XNS-510 | TK-00550 | S-58 | CSN-543 | | G-MCRNR-20-5D | G-MCRNL-20-5D | CNMG-543 | 1.250 | 1.250 | 6.000 | 1.340 | 1.500 | CSN-533 | NL-58 | CL-9 | XNS-510 | TK-00550 | S-58 | CSN-543 | | G-MCRNR-85-6D | G-MCRNL-85-6D | CNMG-643 | 1.000 | 1.250 | 6.000 | 1.480 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCRNR-86-6D | G-MCRNL-86-6D | CNMG-643 | 1.000 | 1.500 | 6.000 | 1.480 | 1.250 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCRNR-20-6D | G-MCRNL-20-6D | CNMG-643 | 1.250 | 1.250 | 6.000 | 1.480 | 1.500 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCRNR-24-6D | G-MCRNL-24-6D | CNMG-643 | 1.500 | 1.500 | 6.000 | 1.480 | 2.000 | CSN-633 | NL-68 | CL-12 | XNS-510 | TK-00546 | S-68 | CSN-643 | | G-MCRNR-24-8D | G-MCRNL-24-8D | CNMG-866 | 1.500 | 1.500 | 6.000 | 1.620 | 2.000 | CSN-846 | NL-810 | CL-24 | XNS-610 | TK-00718 | S-810 | - 1 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ### G-MDJNR/L Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| (inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|----------|-------|---------|------------|--------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MDJNR-12-4C | G-MDJNL-12-4C | DNMG-432 | 0.750 | 0.750 | 5.000 | 1.380 | 1.000 | DSN-433 | NL-46 | CL-20 | XNS-48 | TK-00551 | S-46 | DSN-423** | | G-MDJNR-16-4D | G-MDJNL-16-4D | DNMG-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.250 | DSN-433 | NL-46 | CL-20 | XNS-48 | TK-00551 | S-46 | DSN-423** | | G-MDJNR-85-4D | G-MDJNL-85-4D | DNMG-432 | 1.000 | 1.250 | 6.000 | 1.250 | 1.250 | DSN-433 | NL-46 | CL-20 | XNS-48 | TK-00551 | S-46 | DSN-423** | | G-MDJNR-20-4D | G-MDJNL-20-4D | DNMG-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | DSN-433 | NL-46 | CL-20 | XNS-48 | TK-00551 | S-46 | DSN-423** | | G-MDJNR-24-4D | G-MDJNL-24-4D | DNMG-432 | 1.500 | 1.500 | 6.000 | 1.250 | 2.000 | DSN-433 | NL-46 | CL-20 | XNS-48 | TK-00551 | S-46 | DSN-423** | | G-MDJNR-16-5D | G-MDJNL-16-5D | DNMG-543 | 1.000 | 1.000 | 6.000 | 1.470 | 1.250 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDJNR-85-5D | G-MDJNL-85-5D | DNMG-543 | 1.000 | 1.250 | 6.000 | 1.470 | 1.250 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDJNR-86-5D | G-MDJNL-86-5D | DNMG-543 | 1.000 | 1.500 | 6.000 | 1.470 | 1.250 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDJNR-20-5D | G-MDJNL-20-5D | DNMG-543 | 1.250 | 1.250 | 6.000 | 1.470 | 1.500 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDJNR-24-5D | G-MDJNL-24-5D | DNMG-543 | 1.500 | 1.500 | 6.000 | 1.470 | 2.000 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **G-MDPNN** Neutral Toolholder Shown | Part Number | Gage | | Dim | ensions (| (inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|----------|-------|-------|-----------|----------|-------|---------|------------|---------|--------------------|----------|-----------------|------------| | Neutral | Inserts | В | C | E | F | | Seat | Lock Pin | Clamp | Kit
Clamp Screw | *Tune-Up | Seat Screw | Seat | | G-MDPNN-12-4C | DNMG-432 | 0.750 | 0.750 | 5.000 | 1.620 | 0.375 | DSN-433 | NL-46 | CL-12 | XNS-510 | TK-00553 | S-46 | DSN-423** | | G-MDPNN-16-4D | DNMG-432 | 1.000 | 1.000 | 6.000 | 1.620 | 0.500 | DSN-433 | NL-46 | CL-12 | XNS-510 | TK-00553 | S-46 | DSN-423** | | G-MDPNN-85-4D | DNMG-432 | 1.000 | 1.250 | 6.000 | 1.620 | 0.500 | DSN-433 | NL-46 | CL-12 | XNS-510 | TK-00553 | S-46 | DSN-423** | | G-MDPNN-20-4D | DNMG-432 | 1.250 | 1.250 | 6.000 | 1.620 | 0.625 | DSN-433 | NL-46 | CL-12 | XNS-510 | TK-00553 | S-46 | DSN-423** | | G-MDPNN-24-4D | DNMG-432 | 1.500 | 1.500 | 6.000 | 1.620 | 0.750 | DSN-433 | NL-46 | CL-12 | XNS-510 | TK-00553 | S-46 | DSN-423** | | G-MDPNN-16-5D | DNMG-543 | 1.000 | 1.000 | 6.000 | 1.920 | 0.500 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDPNN-85-5D | DNMG-543 | 1.000 | 1.250 | 6.000 | 1.920 | 0.500 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDPNN-86-5D | DNMG-543 | 1.000 | 1.500 | 6.000 | 1.920 | 0.500 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | | G-MDPNN-20-5D | DNMG-543 | 1.250 | 1.250 | 6.000 | 1.920 | 0.625 | DSN-533 | NL-58 | CL-12 | XNS-510 | TK-00552 | S-58 | DSN-543 | 0.750 DSN-533 NL-58 CL-12 XNS-510 TK-00552 DSN-543 S-58 DNMG-543 1.500 1.500 6.000 1.920 G-MDPNN-24-5D ^{**} Cannot be used with lock pin. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} Cannot be used with lock pin. ### G-MRGNR/L Style G / Round / Negative Rake | | | | | | | | | _ | | | | TOUTHUIGET SIN | | | |---------------|---------------|---------|-------|-------|-----------|----------|-------|---------|------------|---------|-------------|-----------------|------------|------------| | Part N | umber | Gage | | Dim | ensions (| (inches) | | S | tandard Co | omponen | ts | | Optional | Components | | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MRGNR-12-3C | G-MRGNL-12-3C | RNMG-32 | 0.750 | 0.750 | 5.000 | 1.000 | 1.000 | _ | NL-33 | CL-6 | XNS-36 | R TK-00740 | _ | - | | G-MRGNR-12-4C | G-MRGNL-12-4C | RNMG-43 | 0.750 | 0.750 | 5.000 | 1.190 | 1.000 | IRSN-43 | NL-46 | CL-9 | XNS-59 | TK-00554 | S-46 | IRSN-44 | | G-MRGNR-16-4D | G-MRGNL-16-4D | RNMG-43 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | IRSN-43 | NL-46 | CL-9 | XNS-59 | TK-00554 | S-46 | IRSN-44 | | G-MRGNR-85-4D | G-MRGNL-85-4D | RNMG-43 | 1.000 | 1.250 | 6.000 | 1.190 | 1.250 | IRSN-43 | NL-46 | CL-9 | XNS-59 | TK-00554 | S-46 | IRSN-44 | | G-MRGNR-86-4D | G-MRGNL-86-4D | RNMG-43 | 1.000 | 1.500 | 6.000 | 1.190 | 1.250 | IRSN-43 | NL-46 | CL-9 | XNS-59 | TK-00554 | S-46 | IRSN-44 | | G-MRGNR-20-4D | G-MRGNL-20-4D | RNMG-43 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | IRSN-43 | NL-46 | CL-9 | XNS-59 | TK-00554 | S-46 | IRSN-44 | | G-MRGNR-16-5D | G-MRGNL-16-5D | RNMG-54 | 1.000 | 1.000 | 6.000 | 1.380 | 1.250 | RSN-53 | NL-58 | CL-9 | XNS-59 | TK-00555 | S-58 | - | | G-MRGNR-85-5D | G-MRGNL-85-5D | RNMG-54 | 1.000 | 1.250 | 6.000 | 1.380 | 1.250 | RSN-53 | NL-58 | CL-9 | XNS-59 | TK-00555 | S-58 | - | | G-MRGNR-20-5D | G-MRGNL-20-5D | RNMG-54 | 1.250 | 1.250 | 6.000 | 1.380 | 1.500 | RSN-53 | NL-58 | CL-9 | XNS-59 | TK-00555 | S-58 | - | | G-MRGNR-16-6D | G-MRGNL-16-6D | RNMG-64 | 1.000 | 1.000 | 6.000 | 1.520 | 1.250 | RSN-63 | NL-68 | CL-12 | XNS-59 | TK-00556 | S-68 | - | | G-MRGNR-85-6D | G-MRGNL-85-6D | RNMG-64 | 1.000 | 1.250 | 6.000 | 1.520 | 1.250 | RSN-63 | NL-68 | CL-12 | XNS-59 | TK-00556 | S-68 | - | | G-MRGNR-20-6D | G-MRGNL-20-6D | RNMG-64 | 1.250 | 1.250 | 6.000 | 1.520 | 1.500 | RSN-63 | NL-68 | CL-12 | XNS-59 | TK-00556 | S-68 | - | | G-MRGNR-24-8D | G-MRGNL-24-8D | RNMG-86 | 1.500 | 1.500 | 6.000 | 1.700 | 2.000 | RSN-84 | NL-810 | CL-24 | XNS-610 | TK-00557 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MSBNR/L Style B / Square / Negative Rake / 15° Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|--------|-------------|-----------------|-----------------|------------| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MSBNR-8-3C | G-MSBNL 8-3C | SNMG-322 | 0.500 | 0.500 | 5.000 | 1.060 | 0.500 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSBNR-10-3C | G-MSBNL-10-3C | SNMG-322 | 0.625 | 0.625 | 5.000 | 1.060 | 0.500 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSBNR-12-3C | G-MSBNL-12-3C | SNMG-322 | 0.750 | 0.750 | 5.000 | 1.060 | 0.625 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSBNR-16-3D | G-MSBNL-16-3D | SNMG-322 | 1.000 | 1.000 | 6.000 | 1.060 | 0.875 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSBNR-12-4C | G-MSBNL-12-4C | SNMG-432 | 0.750 | 0.750 | 5.000 | 1.410 | 0.750 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSBNR-16-4D | G-MSBNL-16-4D | SNMG-432 | 1.000 | 1.000 | 6.000 | 1.410 | 0.843 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSBNR-85-4D | G-MSBNL-85-4D | SNMG-432 | 1.000 | 1.250 | 6.000 | 1.410 | 0.843 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSBNR-20-4D | G-MSBNL-20-4D | SNMG-432 | 1.250 | 1.250 | 6.000 | 1.410 | 1.093 | ISSN-433 | NL-46 | CL-9 | XNS-59
 TK-00558 | S-46 | ISSN-443 | | G-MSBNR-16-5D | G-MSBNL-16-5D | SNMG-543 | 1.000 | 1.000 | 6.000 | 1.560 | 0.828 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSBNR-85-5D | G-MSBNL-85-5D | SNMG-543 | 1.000 | 1.250 | 6.000 | 1.560 | 0.828 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSBNR-20-5D | G-MSBNL-20-5D | SNMG-543 | 1.250 | 1.250 | 6.000 | 1.560 | 1.078 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSBNR-24-5D | G-MSBNL-24-5D | SNMG-543 | 1.500 | 1.500 | 6.000 | 1.560 | 1.328 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSBNR-20-6D | G-MSBNL-20-6D | SNMG-643 | 1.250 | 1.250 | 6.000 | 1.590 | 1.031 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSBNR-24-6D | G-MSBNL-24-6D | SNMG-643 | 1.500 | 1.500 | 6.000 | 1.590 | 1.281 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSBNR-24-8D | G-MSBNL-24-8D | SNMG-866 | 1.500 | 1.500 | 6.000 | 1.970 | 1.250 | SSN-844 | NL-810 | CL-24 | XNS-610 | TK-00714 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **G-MSDNN** ### Style D / Square / Negative Rake / 45° Lead | | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|----------|-------|-------|-----------|---------|-------|----------|------------|--------|-------------|-----------------|------------|------------| | Part Number | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MSDNN-8-3C | SNMG-322 | 0.500 | 0.500 | 5.000 | 1.140 | 0.250 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSDNN-10-3C | SNMG-322 | 0.625 | 0.625 | 5.000 | 1.140 | 0.312 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSDNN-12-3C | SNMG-322 | 0.750 | 0.750 | 5.000 | 1.140 | 0.375 | ISSN-322 | NL-34L | CL-6 | XNS-36 | TK-00761 | S-34 | - | | G-MSDNN-12-4C | SNMG-432 | 0.750 | 0.750 | 5.000 | 1.390 | 0.375 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSDNN-16-4D | SNMG-432 | 1.000 | 1.000 | 6.000 | 1.390 | 0.500 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSDNN-85-4D | SNMG-432 | 1.000 | 1.250 | 6.000 | 1.390 | 0.500 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSDNN-20-4D | SNMG-432 | 1.250 | 1.250 | 6.000 | 1.390 | 0.625 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSDNN-16-5D | SNMG-543 | 1.000 | 1.000 | 6.000 | 1.610 | 0.500 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSDNN-85-5D | SNMG-543 | 1.000 | 1.250 | 6.000 | 1.610 | 0.500 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSDNN-86-5D | SNMG-543 | 1.000 | 1.500 | 6.000 | 1.610 | 0.500 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSDNN-20-5D | SNMG-543 | 1.250 | 1.250 | 6.000 | 1.610 | 0.625 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSDNN-24-5D | SNMG-543 | 1.500 | 1.500 | 6.000 | 1.610 | 0.750 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSDNN-85-6D | SNMG-643 | 1.000 | 1.250 | 6.000 | 1.730 | 0.500 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSDNN-20-6D | SNMG-643 | 1.250 | 1.250 | 6.000 | 1.730 | 0.625 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSDNN-24-6D | SNMG-643 | 1.500 | 1.500 | 6.000 | 1.730 | 0.750 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSDNN-24-8D | SNMG-866 | 1.500 | 1.500 | 6.000 | 2.230 | 0.750 | SSN-844 | NL-810 | CL-24 | XNS-610 | TK-00714 | S-810 | - | st Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MSKNR/L Style K / Square / Negative Rake / 15° Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Seat | | G-MSKNR-8-3C | G-MSKNL-8-3C | SNMG-322 | 0.500 | 0.500 | 5.000 | 1.000 | 0.625 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSKNR-10-3C | G-MSKNL-10-3C | SNMG-322 | 0.625 | 0.625 | 5.000 | 1.000 | 0.750 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSKNR-12-3C | G-MSKNL-12-3C | SNMG-322 | 0.750 | 0.750 | 5.000 | 1.000 | 0.875 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSKNR-16-3D | G-MSKNL-16-3D | SNMG-322 | 1.000 | 1.000 | 6.000 | 1.000 | 1.125 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSKNR-12-4C | G-MSKNL-12-4C | SNMG-432 | 0.750 | 0.750 | 5.000 | 1.220 | 1.000 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSKNR-16-4D | G-MSKNL-16-4D | SNMG-432 | 1.000 | 1.000 | 6.000 | 1.220 | 1.250 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSKNR-85-4D | G-MSKNL-85-4D | SNMG-432 | 1.000 | 1.250 | 6.000 | 1.220 | 1.250 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSKNR-20-4D | G-MSKNL-20-4D | SNMG-432 | 1.250 | 1.250 | 6.000 | 1.220 | 1.500 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSKNR-16-5D | G-MSKNL-16-5D | SNMG-543 | 1.000 | 1.000 | 6.000 | 1.440 | 1.250 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSKNR-85-5D | G-MSKNL-85-5D | SNMG-543 | 1.000 | 1.250 | 6.000 | 1.440 | 1.250 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSKNR-20-5D | G-MSKNL-20-5D | SNMG-543 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSKNR-85-6D | G-MSKNL-85-6D | SNMG-643 | 1.000 | 1.250 | 6.000 | 1.550 | 1.250 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSKNR-20-6D | G-MSKNL-20-6D | SNMG-643 | 1.250 | 1.250 | 6.000 | 1.550 | 1.500 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSKNR-24-6D | G-MSKNL-24-6D | SNMG-643 | 1.500 | 1.500 | 6.000 | 1.550 | 2.000 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSKNR-24-8D | G-MSKNL-24-8D | SNMG-866 | 1.500 | 1.500 | 6.000 | 1.970 | 2.000 | SSN-844 | NL-810 | CL-24 | XNS-610 | TK-00714 | S-810 | _ | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ### G-MSRNR/L Style R / Square / Negative Rake / 15° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| (inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|----------|-------|----------|------------|--------|-------------|-----------------|-----------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MSRNR-8-3C | G-MSRNL-8-3C | SNMG-322 | 0.500 | 0.500 | 5.000 | 1.060 | 0.656 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | _ | | G-MSRNR-10-3C | G-MSRNL-10-3C | SNMG-322 | 0.625 | 0.625 | 5.000 | 1.060 | 0.781 | ISSN-322 | NL-34 | CL-6 | XNS-36 | TK-00561 | S-34 | - | | G-MSRNR-12-3C | G-MSRNL-12-3C | SNMG-322 | 0.750 | 0.750 | 5.000 | 1.060 | 0.906 | ISSN-322 | NL-34L | CL-6 | XNS-36 | TK-00761 | S-34 | - | | G-MSRNR-12-4C | G-MSRNL-12-4C | SNMG-432 | 0.750 | 0.750 | 5.000 | 1.240 | 0.875 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSRNR-16-4D | G-MSRNL-16-4D | SNMG-432 | 1.000 | 1.000 | 6.000 | 1.240 | 1.125 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSRNR-85-4D | G-MSRNL-85-4D | SNMG-432 | 1.000 | 1.250 | 6.000 | 1.240 | 1.125 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSRNR-20-4D | G-MSRNL-20-4D | SNMG-432 | 1.250 | 1.250 | 6.000 | 1.240 | 1.375 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSRNR-16-5D | G-MSRNL-16-5D | SNMG-543 | 1.000 | 1.000 | 6.000 | 1.470 | 1.093 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSRNR-85-5D | G-MSRNL-85-5D | SNMG-543 | 1.000 | 1.250 | 6.000 | 1.470 | 1.093 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSRN-20-5D | G-MSRNL-20-5D | SNMG-543 | 1.250 | 1.250 | 6.000 | 1.470 | 1.343 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSRNR-24-5D | G-MSRNL-24-5D | SNMG-543 | 1.500 | 1.500 | 6.000 | 1.470 | 1.843 | SSN-533 | NL-58 | CL-12 | XNS-510 | TK-00559 | S-58 | ISSN-543 | | G-MSRNR-85-6D | G-MSRNL-85-6D | SNMG-643 | 1.000 | 1.250 | 6.000 | 1.500 | 1.062 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSRNR-86-6D | G-MSRNL-86-6D | SNMG-643 | 1.000 | 1.500 | 6.000 | 1.500 | 1.062 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSRNR-20-6D | G-MSRNL-20-6D | SNMG-643 | 1.250 | 1.250 | 6.000 | 1.500 | 1.312 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSRNR-24-6D | G-MSRNL-24-6D | SNMG-643 | 1.500 | 1.500 | 6.000 | 1.500 | 1.812 | ISSN-633 | NL-68 | CL-12 | XNS-510 | TK-00560 | S-68 | ISSN-643 | | G-MSRNR-24-8D | G-MSRNL-24-8D | SNMG-866 | 1.500 | 1.500 | 6.000 | 1.630 | 1.765 | SSN-844 | NL-810 | CL-24 | XNS-610 | TK-00714 | S-810 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MSSNR/L Style S / Square / Negative Rake / 45° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------
---------|-------|----------|------------|---------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MSSNR-12-4C | G-MSSNL-12-4C | SNMG-432 | 0.750 | 0.750 | 5.000 | 1.230 | 0.656 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSSNR-16-4D | G-MSSNL-16-4D | SNMG-432 | 1.000 | 1.000 | 6.000 | 1.230 | 0.906 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSSNR-85-4D | G-MSSNL-85-4D | SNMG-432 | 1.000 | 1.250 | 6.000 | 1.230 | 0.906 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSSNR-20-4D | G-MSSNL-20-4D | SNMG-432 | 1.250 | 1.250 | 6.000 | 1.230 | 1.156 | ISSN-433 | NL-46 | CL-9 | XNS-59 | TK-00558 | S-46 | ISSN-443 | | G-MSSNR-16-5D | G-MSSNL-16-5D | SNMG-543 | 1.000 | 1.000 | 6.000 | 1.380 | 0.828 | SSN-533 | NL-58 | CL-9 | XNS-510 | TK-00562 | S-58 | ISSN-543 | | G-MSSNR-85-5D | G-MSSNL-85-5D | SNMG-543 | 1.000 | 1.250 | 6.000 | 1.380 | 0.828 | SSN-533 | NL-58 | CL-9 | XNS-510 | TK-00562 | S-58 | ISSN-543 | | G-MSSNR-86-5D | G-MSSNL-86-5D | SNMG-543 | 1.000 | 1.500 | 6.000 | 1.380 | 0.828 | SSN-533 | NL-58 | CL-9 | XNS-510 | TK-00562 | S-58 | ISSN-543 | | G-MSSNR-20-5D | G-MSSNL-20-5D | SNMG-543 | 1.250 | 1.250 | 6.000 | 1.380 | 1.078 | SSN-533 | NL-58 | CL-9 | XNS-510 | TK-00562 | S-58 | ISSN-543 | | G-MSSNR-24-5D | G-MSSNL-24-5D | SNMG-543 | 1.500 | 1.500 | 6.000 | 1.380 | 1.328 | SSN-533 | NL-58 | CL-9 | XNS-510 | TK-00562 | S-58 | ISSN-543 | | G-MSSNR-85-6D | G-MSSNL-85-6D | SNMG-643 | 1.000 | 1.250 | 6.000 | 1.480 | 0.750 | ISSN-633 | NL-68 | CL-9 | XNS-510 | TK-00563 | S-68 | ISSN-643 | | G-MSSNR-86-6D | G-MSSNL-86-6D | SNMG-643 | 1.000 | 1.500 | 6.000 | 1.480 | 0.750 | ISSN-633 | NL-68 | CL-9 | XNS-510 | TK-00563 | S-68 | ISSN-643 | | G-MSSNR-20-6D | G-MSSNL-20-6D | SNMG-643 | 1.250 | 1.250 | 6.000 | 1.480 | 1.000 | ISSN-633 | NL-68 | CL-9 | XNS-510 | TK-00563 | S-68 | ISSN-643 | | G-MSSNR-24-6D | G-MSSNL-24-6D | SNMG-643 | 1.500 | 1.500 | 6.000 | 1.480 | 1.500 | ISSN-633 | NL-68 | CL-9 | XNS-510 | TK-00563 | S-68 | ISSN-643 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MTANR/L | Neutral | Too | lhale | lor | Chaur | |---------|-----|-------|-----|-------| | weutrai | 100 | ποιο | ıer | SHOWL | | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|-----------------|------------| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTANR-8-2C | G-MTANL-8-2C | TNMG-221 | 0.500 | 0.500 | 5.000 | 0.970 | 0.500 | - | NL-23 | CL-19 | XNS-36 | TK-00742 | - | _ | | G-MTANR-10-2C | G-MTANL-10-2C | TNMG-221 | 0.625 | 0.625 | 5.000 | 0.970 | 0.625 | _ | NL-23 | CL-19 | XNS-36 | TK-00742 | - | - | | G-MTANR-10-3C | G-MTANL-10-3C | TNMG-322 | 0.625 | 0.625 | 5.000 | 1.120 | 0.625 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTANR-12-3C | G-MTANL-12-3C | TNMG-322 | 0.750 | 0.750 | 5.000 | 1.120 | 0.750 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTANR-16-3D | G-MTANL-16-3D | TNMG-322 | 1.000 | 1.000 | 6.000 | 1.120 | 1.000 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTANR-85-3D | G-MTANL-85-3D | TNMG-322 | 1.000 | 1.250 | 6.000 | 1.120 | 1.000 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTANR-16-4D | G-MTANL-16-4D | TNMG-432 | 1.000 | 1.000 | 6.000 | 1.220 | 1.000 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTANR-85-4D | G-MTANL-85-4D | TNMG-432 | 1.000 | 1.250 | 6.000 | 1.220 | 1.000 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTANR-20-4D | G-MTANL-20-4D | TNMG-432 | 1.250 | 1.250 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTANR-24-4D | G-MTANL-24-4D | TNMG-432 | 1.500 | 1.500 | 6.000 | 1.220 | 1.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTANR-16-5D | G-MTANL-16-5D | TNMG-543 | 1.000 | 1.000 | 6.000 | 1.450 | 1.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTANR-85-5D | G-MTANL-85-5D | TNMG-543 | 1.000 | 1.250 | 6.000 | 1.450 | 1.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTANR-86-5D | G-MTANL-86-5D | TNMG-543 | 1.000 | 1.500 | 6.000 | 1.450 | 1.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTANR-20-5D | G-MTANL-20-5D | TNMG-543 | 1.250 | 1.250 | 6.000 | 1.450 | 1.250 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTANR-24-5D | G-MTANL-24-5D | TNMG-543 | 1.500 | 1.500 | 6.000 | 1.450 | 1.500 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTANR-24-6D | G-MTANL-24-6D | TNMG-663 | 1.500 | 1.500 | 6.000 | 1.480 | 1.500 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | TSN-657 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **G-MTENNS** Style E / Triangle / Negative Rake / 30° Lead Neutral Toolholder Shown | | | | | | miouci Jilowii | | | | | | | | | |----------------|----------|-------|-------|-----------|----------------|-------|----------|------------|---------|-------------|-----------------|-----------------|------------| | | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | | Part Number | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTENNS-8-2C | TNMG-221 | 0.500 | 0.500 | 5.000 | 1.000 | 0.250 | - | NL-23 | CL-6 | XNS-36 | TK-00716 | _ | - | | G-MTENNS-10-2C | TNMG-221 | 0.625 | 0.625 | 5.000 | 1.000 | 0.312 | _ | NL-23 | CL-6 | XNS-36 | TK-00716 | _ | _ | | G-MTENNS-10-3C | TNMG-322 | 0.625 | 0.625 | 5.000 | 1.160 | 0.312 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTENNS-12-3C | TNMG-322 | 0.750 | 0.750 | 5.000 | 1.160 | 0.375 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTENNS-16-3D | TNMG-322 | 1.000 | 1.000 | 6.000 | 1.160 | 0.500 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTENNS-85-3D | TNMG-322 | 1.000 | 1.250 | 6.000 | 1.160 | 0.500 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTENNS-12-4C | TNMG-432 | 0.750 | 0.750 | 5.000 | 1.500 | 0.375 | ITSN-433 | NL-46 | CL-9 | XNS-59 | TK-00725 | S-46 | - | | G-MTENNS-16-4D | TNMG-432 | 1.000 | 1.000 | 6.000 | 1.500 | 0.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTENNS-85-4D | TNMG-432 | 1.000 | 1.250 | 6.000 | 1.500 | 0.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTENNS-86-4D | TNMG-432 | 1.000 | 1.500 | 6.000 | 1.500 | 0.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTENNS-20-4D | TNMG-432 | 1.250 | 1.250 | 6.000 | 1.500 | 0.625 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | _ | | G-MTENNS-20-5D | TNMG-543 | 1.250 | 1.250 | 6.000 | 1.640 | 0.625 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | - | | G-MTENNS-24-5D | TNMG-543 | 1.500 | 1.500 | 6.000 | 1.640 | 0.750 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | _ | | G-MTENNS-24-6D | TNMG-663 | 1.500 | 1.500 | 6.000 | 1.950 | 0.750 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | - | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ^{**} Cannot be used with lock pin. ### G-MTFNR/L Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTFNR-8-2C | G-MTFNL-8-2C | TNMG-221 | 0.500 | 0.500 | 5.000 | 0.810 | 0.750 | - | NL-23 | CL-19 | XNS-36 | TK-00742 | _ | _ | | G-MTFNR-10-2C | G-MTFNL-10-2C | TNMG-221 | 0.625 | 0.625 | 5.000 | 0.810 | 0.875 | - | NL-23 | CL-19 | XNS-36 | TK-00742 | _ | - | | G-MTFNR-10-3C | G-MTFNL-10-3C | TNMG-322 | 0.625 | 0.625 | 5.000 | 0.940 | 0.875 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTFNR-12-3C | G-MTFNL-12-3C | TNMG-322 | 0.750 | 0.750 | 5.000 | 0.940 | 1.000 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTFNR-16-3D | G-MTFNL-16-3D | TNMG-322 | 1.000 | 1.000 | 6.000 | 0.940 | 1.250 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTFNR-85-3D | G-MTFNL-85-3D | TNMG-322 | 1.000 | 1.250 | 6.000 | 0.940 | 1.250 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTFNR-20-3D | G-MTFNL-20-3D | TNMG-322 | 1.250 | 1.250 | 6.000 | 0.940 | 1.500 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTFNR-16-4D | G-MTFNL-16-4D | TNMG-432 | 1.000 | 1.000 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTFNR-85-4D | G-MTFNL-85-4D | TNMG-432 | 1.000 | 1.250 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTFNR-86-4D | G-MTFNL-86-4D | TNMG-432 | 1.000 | 1.500 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTFNR-20-4D | G-MTFNL-20-4D | TNMG-432 | 1.250 | 1.250 | 6.000 | 1.220 | 1.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTFNR-24-4D | G-MTFNL-24-4D | TNMG-432 | 1.500 |
1.500 | 6.000 | 1.220 | 2.000 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTFNR-16-5D | G-MTFNL-16-5D | TNMG-543 | 1.000 | 1.000 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-12 | XNS-510 | TK-00569 | S-58 | ITSN-543 | | G-MTFNR-85-5D | G-MTFNL-85-5D | TNMG-543 | 1.000 | 1.250 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-12 | XNS-510 | TK-00569 | S-58 | ITSN-543 | | G-MTFNR-86-5D | G-MTFNL-86-5D | TNMG-543 | 1.000 | 1.500 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-12 | XNS-510 | TK-00569 | S-58 | ITSN-543 | | G-MTFNR-20-5D | G-MTFNL-20-5D | TNMG-543 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | ITSN-533 | NL-58 | CL-12 | XNS-510 | TK-00569 | S-58 | ITSN-543 | | G-MTFNR-24-5D | G-MTFNL-24-5D | TNMG-543 | 1.500 | 1.500 | 6.000 | 1.440 | 2.000 | ITSN-533 | NL-58 | CL-12 | XNS-510 | TK-00569 | S-58 | ITSN-543 | | G-MTFNR-24-6D | G-MTFNL-24-6D | TNMG-663 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | TSN-657 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} Cannot be used with lock pin. ### G-MTGNR/L ### Style G / Triangle / Negative Rake / 0° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|--------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | А | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTGNR-8-2C | G-MTGNL-8-2C | TNMG-221 | 0.500 | 0.500 | 5.000 | 0.970 | 0.625 | - | NL-23 | CL-19 | XNS-36 | TK-00742 | _ | _ | | G-MTGNR-10-2C | G-MTGNL-10-2C | TNMG-221 | 0.625 | 0.625 | 5.000 | 0.970 | 0.750 | - | NL-23 | CL-19 | XNS-36 | TK-00742 | - | - | | G-MTGNR-10-3C | G-MTGNL-10-3C | TNMG-322 | 0.625 | 0.625 | 5.000 | 1.110 | 0.875 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTGNR-12-3C | G-MTGNL-12-3C | TNMG-322 | 0.750 | 0.750 | 5.000 | 1.110 | 1.000 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTGNR-16-3D | G-MTGNL-16-3D | TNMG-322 | 1.000 | 1.000 | 6.000 | 1.110 | 1.250 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTGNR-85-3D | G-MTGNL-85-3D | TNMG-322 | 1.000 | 1.250 | 6.000 | 1.110 | 1.250 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTGNR-20-3D | G-MTGNL-20-3D | TNMG-322 | 1.250 | 1.250 | 6.000 | 1.110 | 1.500 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTGNR-12-4C | G-MTGNL-12-4C | TNMG-432 | 0.750 | 0.750 | 5.000 | 1.220 | 1.000 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-16-4D | G-MTGNL-16-4D | TNMG-432 | 1.000 | 1.000 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-85-4D | G-MTGNL-85-4D | TNMG-432 | 1.000 | 1.250 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-86-4D | G-MTGNL-86-4D | TNMG-432 | 1.000 | 1.500 | 6.000 | 1.220 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-20-4D | G-MTGNL-20-4D | TNMG-432 | 1.250 | 1.250 | 6.000 | 1.220 | 1.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-24-4D | G-MTGNL-24-4D | TNMG-432 | 1.500 | 1.500 | 6.000 | 1.220 | 2.000 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTGNR-16-5D | G-MTGNL-16-5D | TNMG-543 | 1.000 | 1.000 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTGNR-85-5D | G-MTGNL-85-5D | TNMG-543 | 1.000 | 1.250 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTGNR-86-5D | G-MTGNL-86-5D | TNMG-543 | 1.000 | 1.500 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTGNR-20-5D | G-MTGNL-20-5D | TNMG-543 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTGNR-24-5D | G-MTGNL-24-5D | TNMG-543 | 1.500 | 1.500 | 6.000 | 1.440 | 2.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTGNR-24-6D | G-MTGNL-24-6D | TNMG-663 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | TSN-657 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **G-MTJNRS** Style J / Triangle / Negative Rake / 3° Reverse Lead Neutral Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional | Components | |----------------|----------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|-----------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTJNRS-12-3C | G-MTJNLS-12-3C | TNMG-322 | 0.750 | 0.750 | 5.000 | 1.120 | 1.000 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTJNRS-16-3D | G-MTJNLS-16-3D | TNMG-322 | 1.000 | 1.000 | 6.000 | 1.120 | 1.250 | ITSN-333 | NL-34L | CL-6 | XNS-36 | TK-00564 | S-34 | ITSN-323 | | G-MTJNRS-16-4D | G-MTJNLS-16-4D | TNMG-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTJNRS-85-4D | G-MTJNLS-85-4D | TNMG-432 | 1.000 | 1.250 | 6.000 | 1.190 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTJNRS-86-4D | G-MTJNLS-86-4D | TNMG-432 | 1.000 | 1.500 | 6.000 | 1.190 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTJNRS-20-4D | G-MTJNLS-20-4D | TNMG-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | - | | G-MTJNRS-86-5D | G-MTJNLS-86-5D | TNMG-543 | 1.000 | 1.500 | 6.000 | 1.440 | 1.250 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | - | | G-MTJNRS-20-5D | G-MTJNLS-20-5D | TNMG-543 | 1.250 | 1.250 | 6.000 | 1.440 | 1.500 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | - | | G-MTJNRS-24-5D | G-MTJNLS-24-5D | TNMG-543 | 1.500 | 1.500 | 6.000 | 1.440 | 2.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | - | | G-MTJNRS-24-6D | G-MTJNLS-24-6D | TNMG-663 | 1.500 | 1.500 | 6.000 | 1.670 | 2.000 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} Cannot be used with lock pin. ### G-MTLNR/L ### Style L / Triangle / Negative Rake / 5° Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| (inches) | | S | tandard Co | omponen | ts | | Optional | Components | |---------------|---------------|----------|-------|-------|-----------|----------|-------|----------|------------|---------|-------------|-----------------|------------|------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | Filler | | G-MTLNR 16-4D | G-MTLNL 16-4D | TNMG-432 | 1.000 | 1.000 | 6 | 1.280 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTLNR 85-4D | G-MTLNL 85-4D | TNMG-432 | 1.000 | 1.250 | 6 | 1.280 | 1.250 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTLNR 20-4D | G-MTLNL 20-4D | TNMG-432 | 1.250 | 1.250 | 6 | 1.280 | 1.500 | ITSN-433 | NL-46 | CL-9 | XNS-510 | TK-00565 | S-46 | TS-424** | | G-MTLNR 20-5D | G-MTLNL 20-5D | TNMG-543 | 1.250 | 1.250 | 6 | 1.410 | 1.500 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTLNR 24-5D | G-MTLNL 24-5D | TNMG-543 | 1.500 | 1.500 | 6 | 1.410 | 2.000 | ITSN-533 | NL-58 | CL-9 | XNS-510 | TK-00566 | S-58 | ITSN-543 | | G-MTLNR 24-6D | G-MTLNL 24-6D | TNMG-663 | 1.500 | 1.500 | 6 | 1.530 | 2.000 | TSN-637 | NL-68L | CL-12 | XNS-510 | TK-00567 | S-68 | TSN-657 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} Cannot be used with lock pin. ### G-MVJNR/L Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional Component | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|--------------------| | Right Hand | Left Hand | Inserts | А | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | | G-MVJNR-12-3C | G-MVJNL-12-3C | VNMG-332 | 0.750 | 0.750 | 5.000 | 1.680 | 1.000 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-16-3D | G-MVJNL-16-3D | VNMG-332 | 1.000 | 1.000 | 6.000 | 1.680 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-85-3D | G-MVJNL-85-3D | VNMG-332 | 1.000 | 1.250 | 6.000 | 1.680 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-86-3D | G-MVJNL-86-3D | VNMG-332 | 1.000 | 1.500 | 6.000 | 1.680 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-20-3D | G-MVJNL-20-3D | VNMG-332 | 1.250 | 1.250 | 6.000 | 1.680 | 1.500 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-24-3D | G-MVJNL-24-3D | VNMG-332 | 1.500 | 1.500 | 6.000 | 1.680 | 2.000 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVJNR-16-4D | G-MVJNL-16-4D | VNMG-432 | 1.000 | 1.000 | 6.000 | 2.000 | 1.250 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00571 | S-46 | | G-MVJNR-86-4D | G-MVJNL-86-4D | VNMG-432 | 1.000 | 1.500 | 6.000 | 2.000 | 1.250 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00570 | S-46 | | G-MVJNR-20-4D | G-MVJNL-20-4D | VNMG-432 | 1.250 | 1.250 | 6.000 | 2.000 | 1.500 | IVSN-433 | NL-46 | CL-30 |
XNS-510 | TK-00569 | S-46 | | G-MVJNR-24-4D | G-MVJNL-24-4D | VNMG-432 | 1.500 | 1.500 | 6.000 | 2.000 | 2.000 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00568 | S-46 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-MVTNR/L Style T / 35° Diamond / Negative Rake / 27° 30' Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| (inches) | | S | tandard Co | omponen | ts | | Optional Component | |---------------|---------------|----------|-------|-------|-----------|----------|-------|----------|------------|---------|-------------|-----------------|--------------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | | G-MVTNR-12-3C | G-MVTNL-12-3C | VNMG-332 | 0.750 | 0.750 | 5.000 | 1.730 | 1.000 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVTNR-16-3D | G-MVTNL-16-3D | VNMG-332 | 1.000 | 1.000 | 6.000 | 1.730 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVTNR-85-3D | G-MVTNL-85-3D | VNMG-332 | 1.000 | 1.250 | 6.000 | 1.730 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVTNR-86-3D | G-MVTNL-86-3D | VNMG-332 | 1.000 | 1.500 | 6.000 | 1.730 | 1.250 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVTNR-20-3D | G-MVTNL-20-3D | VNMG-332 | 1.250 | 1.250 | 6.000 | 1.730 | 1.500 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVTNR-24-3D | G-MVTNL-24-3D | VNMG-332 | 1.500 | 1.500 | 6.000 | 1.730 | 1.750 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **G-MVVNN** Neutral Toolholder Shown | | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional Component | |---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|--------------------| | Part Number | Inserts | A | В | C | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | | G-MVVNN-12-3C | VNMG-332 | 0.750 | 0.750 | 5.000 | 1.750 | 0.375 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-16-3D | VNMG-332 | 1.000 | 1.000 | 6.000 | 1.750 | 0.500 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-85-3D | VNMG-332 | 1.000 | 1.250 | 6.000 | 1.750 | 0.500 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-86-3D | VNMG-332 | 1.000 | 1.500 | 6.000 | 1.750 | 0.500 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-20-3D | VNMG-332 | 1.250 | 1.250 | 6.000 | 1.750 | 0.625 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-24-3D | VNMG-332 | 1.500 | 1.500 | 6.000 | 1.750 | 0.750 | IVSN-322 | NL-34L | CL-30 | XNS-510 | TK-00570 | S-34 | | G-MVVNN-16-4D | VNMG-432 | 1.000 | 1.000 | 6.000 | 2.120 | 0.500 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00571 | S-46 | | G-MVVNN-20-4D | VNMG-432 | 1.250 | 1.250 | 6.000 | 2.120 | 0.625 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00571 | S-46 | | G-MVVNN-24-4D | VNMG-432 | 1.500 | 1.500 | 6.000 | 2.120 | 0.750 | IVSN-433 | NL-46 | CL-30 | XNS-510 | TK-00571 | S-46 | $^{{}^{*} \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ### G-MWLNR/L Style L / Trigon / Negative Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Optional Component | |---------------|---------------|----------|-------|-------|-----------|---------|-------|----------|------------|---------|-------------|-----------------|--------------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat Screw | | G-MWLNR-12-3C | G-MWLNL-12-3C | WNMG-332 | 0.750 | 0.750 | 5.000 | 1.000 | 1.000 | IWSN-323 | NL-34L | CL-6 | XNS-36 | TK-00775 | IWSN-332 | | G-MWLNR-16-3D | G-MWLNL-16-3D | WNMG-332 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | IWSN-323 | NL-34L | CL-6 | XNS-36 | TK-00775 | IWSN-332 | | G-MWLNR-20-3D | G-MWLNL-20-3D | WNMG-332 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | IWSN-323 | NL-34L | CL-6 | XNS-36 | TK-00775 | IWSN-332 | | G-MWLNR-24-3D | G-MWLNL-24-3D | WNMG-332 | 1.500 | 1.500 | 6.000 | 1.000 | 2.000 | IWSN-323 | NL-34L | CL-6 | XNS-36 | TK-00775 | IWSN-332 | | G-MWLNR-12-4C | G-MWLNL-12-4C | WNMG-432 | 0.750 | 0.750 | 5.000 | 1.188 | 1.000 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | _ | | G-MWLNR-16-4D | G-MWLNL-16-4D | WNMG-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | - | | G-MWLNR-20-4D | G-MWLNL-20-4D | WNMG-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | - | | G-MWLNR-24-4D | G-MWLNL-24-4D | WNMG-432 | 1.500 | 1.500 | 6.000 | 1.188 | 2.000 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-CCRPR/L Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | | Stan | dard Con | nponents | | *Tune-Up Kit | |---------------|---------------|----------|-------|-------|-----------|---------|-------|---------|------------------|----------|-------------|--------------|--| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Seat | Seat Screw | Clamp | Clamp Screw | Chip Breaker | Includes all
Standard
Components | | G-CCRPR-12-4C | G-CCRPL-12-4C | CPGN-422 | 0.750 | 0.750 | 5.000 | 1.220 | 1.000 | CSP-422 | #4-40 x 3/8 FHCS | CL-9 | XNS-59 | CBDC-415L | TK-00720 | | G-CCRPR-16-4D | G-CCRPL-16-4D | CPGN-422 | 1.000 | 1.000 | 6.000 | 1.220 | 1.250 | CSP-422 | #4-40 x 3/8 FHCS | CL-9 | XNS-59 | CBDC-415L | TK-00720 | | G-CCRPR-85-4D | G-CCRPL-85-4D | CPGN-422 | 1.000 | 1.250 | 6.000 | 1.220 | 1.250 | CSP-422 | #4-40 x 3/8 FHCS | CL-9 | XNS-59 | CBDC-415L | TK-00720 | | G-CCRPR-20-4D | G-CCRPL-20-4D | CPGN-422 | 1.250 | 1.250 | 6.000 | 1.220 | 1.500 | CSP-422 | #4-40 x 3/8 FHCS | CL-9 | XNS-59 | CBDC-415L | TK-00720 | | G-CCRPR-24-4D | G-CCRPL-24-4D | CPGN-422 | 1.500 | 1.500 | 6.000 | 1.220 | 2.000 | CSP-422 | #4-40 x 3/8 FHCS | CL-9 | XNS-59 | CBDC-415L | TK-00720 | | G-CCRPR-16-6D | G-CCRPL-16-6D | CPGN-633 | 1.000 | 1.000 | 6.000 | 1.310 | 1.250 | CSP-632 | #5-40 x 3/8 FHCS | CL-12 | XNS-510 | CBDC-615G | TK-00533 | | G-CCRPR-85-6D | G-CCRPL-85-6D | CPGN-633 | 1.000 | 1.250 | 6.000 | 1.310 | 1.250 | CSP-632 | #5-40 x 3/8 FHCS | CL-12 | XNS-510 | CBDC-615G | TK-00533 | | G-CCRPR-86-6D | G-CCRPL-86-6D | CPGN-633 | 1.000 | 1.500 | 6.000 | 1.310 | 1.250 | CSP-632 | #5-40 x 3/8 FHCS | CL-12 | XNS-510 | CBDC-615G | TK-00533 | | G-CCRPR-20-6D | G-CCRPL-20-6D | CPGN-633 | 1.250 | 1.250 | 6.000 | 1.310 | 1.500 | CSP-632 | #5-40 x 3/8 FHCS | CL-12 | XNS-510 | CBDC-615G | TK-00533 | | G-CCRPR-24-6D | G-CCRPL-24-6D | CPGN-633 | 1.500 | 1.500 | 6.000 | 1.310 | 2.000 | CSP-632 | #5-40 x 3/8 FHCS | CL-12 | XNS-510 | CBDC-615G | TK-00533 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-CSKPR/L Style K / Square / Positive Rake / 15° Lead | Right-Hand | Toolholder | Shown | |------------|------------|-------| | | | | | Part N | lumber | Gage | | Dim | ensions (| (inches) | | | Stan | dard Con | nponents | | *Tune-Up Kit | |---------------|---------------|----------|-------|-------|-----------|----------|-------|-------|-------------------|----------|-------------|--------------|--| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Seat | Seat Screw | Clamp | Clamp Screw | Chip Breaker | Includes all
Standard
Components | | G-CSKPR-12-4C | G-CSKPL-12-4C | SPGN-422 | 0.750 | 0.750 | 5.000 | 1.120 | 1.000 | SP-40 | #6-32 x 1/2 FHCS | CL-12 | XNS-58 | CBS-4G | TK-00712 | | G-CSKPR-16-4D | G-CSKPL-16-4D | SPGN-422 | 1.000 | 1.000 | 6.000 | 1.120 | 1.250 | SP-40 | #6-32 x 1/2 FHCS | CL-12 | XNS-58 | CBS-4G | TK-00712 | | G-CSKPR-85-4D | G-CSKPL-85-4D | SPGN-422 | 1.000 | 1.250 | 6.000 | 1.120 | 1.250 | SP-40 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBS-4G | TK-00753 | | G-CSKPR-20-4D | G-CSKPL-20-4D | SPGN-422 | 1.250 | 1.250 | 6.000 | 1.120 | 1.500 | SP-40 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBS-4G | TK-00753 | | G-CSKPR-24-4D | G-CSKPL-24-4D | SPGN-422 | 1.500 | 1.500 | 6.000 | 1.120 | 2.000 | SP-40 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBS-4G | TK-00753 | | G-CSKPR-16-6D | G-CSKPL-16-6D | SPGN 633 | 1.000 | 1.000 | 6.000 | 1.500 | 1.250 | SP-60 | #10-32 x 1/2 FHCS | CL-30 | XNS-510 | CBS-6G | TK-00534 | | G-CSKPR-85-6D | G-CSKPL-85-6D | SPGN 633 | 1.000 | 1.250 | 6.000 | 1.500 | 1.250 | SP-60 | #10-32 x 1/2 FHCS | CL-30 | XNS-510 | CBS-6G | TK-00534 | | G-CSKPR-86-6D | G-CSKPL-86-6D | SPGN 633 | 1.000 | 1.500 | 6.000 | 1.500 | 1.250 | SP-60 | #10-32 x 1/2 FHCS | CL-30 | XNS-510 | CBS-6G | TK-00534 | | G-CSKPR-20-6D | G-CSKPL-20-6D | SPGN 633 | 1.250 | 1.250 | 6.000 | 1.500 | 1.500 | SP-60 | #10-32 x 1/2 FHCS | CL-30 | XNS-510 | CBS-6G | TK-00534 | | G-CSKPR-24-6D | G-CSKPL-24-6D | SPGN 633 | 1.500 | 1.500 | 6.000 | 1.500 | 2.000 | SP-60 | #10-32 x 1/2 FHCS | CL-30 | XNS-510 | CBS-6G | TK-00534 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### G-CTAPR/L ### Style A / Triangle / Positive Rake / 0° Lead | Part N | umber | Gage | | Dim | ensions (| (inches) | | | Stan | dard Con | nponents | | *Tune-Up Kit | |---------------|---------------|----------|-------|-------|-----------|----------|-------|---------|-------------------|----------|-------------|--------------|--| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Seat | Seat Screw | Clamp | Clamp Screw | Chip
Breaker | Includes all
Standard
Components | | G-CTAPR-12-3C | G-CTAPL-12-3C | TPGN-322 | 0.750 | 0.750 | 5.000 | 1.000 | 0.750 | TSP-321 | #4-40 x 3/8 FHCS | CL-7 | XNS-36 | CBT-3G | TK-00538 | | G-CTAPR-16-3D | G-CTAPL-16-3D | TPGN-322 | 1.000 | 1.000 | 6.000 | 1.000 | 1.000 | TSP-321 | #4-40 x 3/8 FHCS | CL-7 | XNS-36 | CBT-3G | TK-00538 | | G-CTAPR-85-3D | G-CTAPL-85-3D | TPGN-322 | 1.000 | 1.250 | 6.000 | 1.000 | 1.000 | TSP-321 | #4-40 x 3/8 FHCS | CL-7 | XNS-36 | CBT-3G | TK-00538 | | G-CTAPR-16-4D | G-CTAPL-16-4D | TPGN-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.000 | SP-4 | #6-32 x 1/2 FHCS | CL-12 | XNS-59 | CBT-4G | TK-00537 | | G-CTAPR-85-4D | G-CTAPL-85-4D | TPGN-432 | 1.000 | 1.250 | 6.000 | 1.250 | 1.000 | SP-4 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-4G | TK-00539 | | G-CTAPR-20-4D | G-CTAPL-20-4D | TPGN-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.250 | SP-4 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-4G | TK-00539 | | G-CTAPR-24-4D | G-CTAPL-24-4D | TPGN-432 | 1.500 | 1.500 | 6.000 | 1.250 | 1.500 | SP-4 | #6-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-4G | TK-00539 | | G-CTAPR-16-5D | G-CTAPL-16-5D | TPGN-543 | 1.000 | 1.000 | 6.000 | 1.380 | 1.000 | SP-5 | #8-32 x 1/2 FHCS | CL-12 | XNS-59 | CBT-5G | TK-00745 | | G-CTAPR-20-5D | G-CTAPL-20-5D | TPGN-543 | 1.250 | 1.250 | 6.000 | 1.380 | 1.250 | SP-5 | #8-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-5G | TK-00544 | | G-CTAPR-24-5D | G-CTAPL-24-5D | TPGN-543 | 1.500 | 1.500 | 6.000 | 1.380 | 1.500 | SP-5 | #8-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-5G | TK-00544 | | G-CTAPR-24-6D | G-CTAPL-24-6D | TPGN-666 | 1.500 | 1.500 | 6.000 | 1.500 | 1.500 | SP-6 | #10-32 x 1/2 FHCS | CL-12 | XNS-510 | CBT-6G | TK-007459 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ### **G-CTCPN** Style C / Triangle / Positive Rake / 0° Lead | Part Number | Gage | | Dime | ensions (in | ches) | | Stan | dard Con | nponents | | *Tune-Up Kit | |---------------|----------|-------|-------|-------------|-------|---------|------------------|----------|-------------|--------------|--| | Neutral | Inserts | A | В | C | E | Seat | Seat Screw | Clamp | Clamp Screw | Chip Breaker | Includes all
Standard
Components | | G-CTCPN-44-3D | TPGN-322 | 0.500 | 1.000 | 6.000 | 1.250 | TSP-321 | #4-40 x 3/8 FHCS | CL-22 | XNS-48 | CBT-3G | TK-00540 | | G-CTCPN-64-4D | TPGN-432 | 0.750 | 1.000 | 6.000 | 1.380 | SP-4 | #6-32 x 1/2 FHCS | CL-30 | XNS-59 | CBT-4G | TK-00541 | | G-CTCPN-65-4D | TPGN-432 | 0.750 | 1.250 | 6.000 | 1.380 | SP-4 | #6-32 x 1/2 FHCS | CL-30 | XNS-59 | CBT-4G | TK-00541 | | G-CTCPN-66-4D | TPGN-432 | 0.750 | 1.500 | 6.000 | 1.380 | SP-4 | #6-32 x 1/2 FHCS | CL-30 | XNS-59 | CBT-4G | TK-00541 | | G-CTCPN-76-5D | TPGN-543 | 0.875 | 1.500 | 6.000 | 1.500 | SP-5 | #8-32 x 1/2 FHCS | CL-30 | XNS-510 | CBT-5G | TK-00542 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **GSRN** Style GSRN | Part Number | Dim | ensions (inc | :hes) | | Sta | ndard Compo | nents | *Tune-Up Kit | Insert Optio | ons | |-------------|-------|--------------|-------|------|------------|-------------|-------------|--|--------------|-------| | Neutral | A | В | С | Shim | Center Pin | Clamp | Clamp Screw | Includes all
Standard
Components | Inserts | R | | GSRN-646 | 0.750 | 1.000 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR4 | 0.062 | | GSRN-656 | 0.750 | 1.250 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR6 | 0.093 | | GSRN-666 | 0.750 | 1.500 | 7.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR8 | 0.125 | | | | | | | | | | | SNMA-64IR10 | 0.156 | | GSRN-168 | 1.000 | 1.000 | 6.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR12 | 0.187 | | GSRN-858 | 1.000 | 1.250 | 7.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR14 | 0.218 | | GSRN-868 | 1.000 | 1.500 | 8.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR16 | 0.250 | | GSRN-2010 | 1.250 | 1.250 | 7.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR20 | 0.312 | | GSRN-2410 | 1.500 | 1.500 | 8.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR24 | 0.375 | | GSRN-2412 | 1.500 | 1.500 | 8.000 | SR12 | 30454 | 30319-2 | 30320 | TK-00574 | SNMA-126IR28 | 0.437 | | | | | | | | | | | SNMA-126IR32 | 0.500 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## **Quick-Change Toolholders** The Greenleaf Quick-Change Toolholders conform to ISO 26623, utilize standard components, and are designed to maximize tool life in carbide and ceramic turning applications. Greenleaf's special design capabilities offer customers unique solutions to further increase productivity. ### MCLNR/L | 80' | ° Diamond Negative | ? Rake / 5º Reverse | Lead / C6 & C8 Tool Heads | |-----|--------------------|---------------------|---------------------------| | | | | | | Part I | Gage | | Dim | ensions | (inches) | | Standard Components | | | | | Optional Components | | | | |--------------------|--------------------|----------|------|---------|----------|------|---------------------|-----------|------------|--------|-------------|---------------------|----------|-------|--| | Right Hand | Left Hand | Inserts | A | В | С | DM1 | DM2 | Shim Seat | Seat Screw | Clamp | Clamp Screw | Coolant
Nozzle | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | GC6-MCLNR-45065-12 | GC6-MCLNL-45065-12 | CNGN-432 | 2.56 | 2.48 | 1.77 | 4.33 | 7.68 | CSN-453 | S-46M | CLM-12 | STCM-4 | 5691 026-03 | NLM-46L | CLM9 | CSN-433 | | GC8-MCLNR-55080-12 | GC8-MCLNL-55080-12 | CNGN-432 | 3.15 | 3.15 | 2.17 | 9.25 | 11.81 | CSN-453 | S-46M | CLM-12 | STCM-4 | 5691 026-03 | NLM-46L | CLM9 | CSN-433 | ### MRGNR/L Round Negative Rake / C6 & C8 Tool Heads | | Part No | Gage | | Dim | ensions | (inches) | | Standard Components | | | | | Optional Components | | | | |-------|----------------|--------------------|---------|------|---------|----------|------|---------------------|-----------|------------|--------|-------------|---------------------|----------|-------|--| | ı | Right Hand | Left Hand | Inserts | A | В | С | DM1 | DM2 | Shim Seat | Seat Screw | Clamp | Clamp Screw | Coolant
Nozzle | Lock Pin | Clamp | 3/ ₁₆ " Insert
Shim Seat | | GC6-N | ARGNR-45065-12 | GC6-MRGNL-45065-12 | RNGN-45 | 2.56 | 2.48 | 1.77 | 4.33 | 7.68 | IRSN-43 | S-46M | CLM-12 | STCM-4 | 5691 026-03 | NLM-46L | CLM9 | IRSN-45 | | GC8-N | ARGNR-55080-12 | GC8-MRGNL-55080-12 | RNGN-45 | 3.15 | 3.15 | 2.17 | 9.25 | 11.81 | IRSN-43 | S-46M | CLM-12 | STCM-4 | 5691 026-03 | NLM-46L | CLM9 | IRSN-45 | ### CRGPR/L # Ø DM2 ### 45° Grooving/Profiling / Replaceable Nest | Part No | umber | Gage | Dimensions (inches) | | | | | | Standard Components | | | | | | | |---------------------|---------------------|---------|---------------------|------|------|------|-------|-------|---------------------|---------------------|--------|------------------------------|----------------|--|--| | Right Hand | Left Hand | Insert | A | В | c | D | DM1 | DM2 | | | | <u> </u> | | | | | | | | | | | | | | Nest | Nest Screw | Clamp | Clamp Screw | Coolant Nozzle | | | | GC6-CRGPR-45065-06V | GC6-CRGPL-45065-06V | RPGN-2V | 2.56 | 2.48 | 0.18 | 0.38 | 9.84 | 11.81 | 411108 | M2.545 x 10mm BHCS | 308618 | M3-0.5 x 12mm SHCS | 5691 026-03 | | | | GC8-CRGPR-55080-06V | GC8-CRGPL-55080-06V | RCGN-2V | 3.15 | 3.15 | 0.38 | 0.38 | 11.81 | 13.78 | 411108 | M2.545 x 10mm BHCS | 308618 | M3-0.5 x 12mm SHCS | 5691 026-03 | | | | GC6-CRGPR-45065-09V | GC6-CRGPL-45065-09V | RPGN-3V | 2.56 | 2.48 | 0.56 | 0.38 | 9.84 | 11.81 | 414009 | M3-0.5 x 12mm TBHCS | 308063 | M58 x 12mm TSHCS | 5691 026-03 | | | | GC8-CRGPR-55080-09V | GC8-CRGPL-55080-09V | RCGN-3V | 3.15 | 3.15 | 0.56 | 0.38 | 11.81 | 13.78 | 414009 | M3-0.5 x 12mm TBHCS | 308063 | M58 x 12mm TSHCS | 5691 026-03 | | | | GC6-CRGPR-45065-12V | GC6-CRGPL-45065-12V | RPGN-4V | 2.56 | 2.48 | 0.75 | 0.38 | 9.84 | 11.81 | 414008 | M58 x 16mm TBHCS | 308136 | 434258 (M6-1.0 x 19mm TSHCS) | 5691 026-03 | | | | GC8-CRGPR-55080-12V | GC8-CRGPR-55080-12V | RCGN-4V | 3.15 | 3.15 | 0.75 | 0.38 | 11.81 | 13.78 | 414008 | M58 x 16mm TBHCS | 308136 | 434258 (M6-1.0 x 19mm TSHCS) | 5691 026-03 | | | ### **CRDPN** Neutral / Replaceable Nest | | Gage Insert | Dim | ensions (inch | ies) | | Standard Components | | | | | | | | | |---------------------|-------------|------|---------------|------|--------|---------------------|--------|------------------------------|----------------|--|--|--|--|--| | Part Number | | A | В | С | Nest | Nest Screw | Clamp | Clamp Screw | Coolant Nozzle | | | | | | | GC6-CRDPN-03065-06V | RPGN-2V | 2.56 | 2.48 | 0.38 | 410631 | M2.545 x 10mm BHCS | 308618 | M3-0.5 x 12mm SHCS | 5691 026-03 | | | | | | | GC8-CRDPN-03080-06V | RCGN-2V | 3.15 | 3.15 | 0.38 | 410631 | M2.545 x 10mm BHCS | 308618 | M3-0.5 x 12mm SHCS | 5691 026-03 | | | | | | | GC6-CRDPN-05065-09V | RPGN-3V | 2.56 | 2.48 | 0.56 | 413970 | M3-0.5 x 12mm TBHCS | 308063 | M58 x 12mm TSHCS | 5691 026-03 | | | | | | | GC8-CRDPN-05080-09V | RCGN-3V | 3.15 | 3.15 | 0.56 | 413970 | M3-0.5 x 12mm TBHCS | 308063 | M58 x 12mm TSHCS | 5691 026-03 | | | | | | | GC6-CRDPN-06065-12V | RPGN-4V | 2.56 | 2.48 | 0.75 | 414007 | M58 x 16mm TBHCS | 308136 | 434258 (M6-1.0 x 19mm TSHCS) | 5691 026-03 | | | | | | | GC8-CRDPN-06080-12V | RCGN-4V | 3.15 | 3.15 | 0.75 | 414007 | M58 x 16mm TBHCS | 308136 | 434258 (M6-1.0 x 19mm TSHCS) | 5691 026-03 | | | | | | TB ### **Toolholders for Ceramic Inserts** Greenleaf toolholder systems for use with ceramic inserts are based upon industry standard hardware. However, geometry and pocket depth are designed to maximize ceramic performance. Negative tools have a 10° negative side
rake rather than the 5° usually found in tools for carbide inserts. This will increase clearance and, in turn, tool life. The additional pocket depth allows for thicker inserts with shims available to adjust the thickness stack-up for thinner tools if necessary. The standard clamp is the long series to secure the inserts without a hole which is a stronger setup. Short clamps are an optional item. Greenleaf has designated a "C" prefix for a ceramic insert toolholder and an "H" prefix for ceramic insert toolholder for hard material machining. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. # Advanced Ceramic Toolholder Identification System - **V** Offset shank with negative 17.5° (72.5°) side or end cutting edge angle - **W** Offset shank with 10° (80°) side cutting edge angle #### **Toolholder Style** The angles shown in parentheses are the angles as shown in the ANSI standard. Offset shank with negative 3° (93°) side cutting edge angle **K** Offset shank with 15° (75°) end or side cutting edge angle Offset shank with negative 5° (95°) end or side cutting edge angle †Greenleaf standard. #### NOTE: All toolholders are shipped qualified over insert gage radius to $\pm .003$ " on C and F dimensions as standard. Some toolholders are qualifiable on length only (C dimension). All toolholders to be qualified other than above should be designated with the appropriate letter under heading "Shank Qualifications." [†]Greenleaf standard. ### **Pictorial Index** ### 80° Diamond – Negative #### C-MCKNR/L Style K 80° Diamond (Using 100° Corner) Negative Rake 15° Lead page: T92 #### C-MCLNR/L Style L 80° Diamond Negative Rake 5° Reverse Lead **page: T92** #### C-MCRNR/L Style R 80° Diamond (Using 100° Corner) Negative Rake 15° Reverse Lead **page: T 93** #### C-MCSNR/L Style S 80° Diamond (Using 100° Corner) Negative Rake 45° Lead page: T93 ### 55° Diamond – Negative ### C-MDJNR/L Style J 55° Diamond Negative Rake 3° Reverse Lead page: T94 ### C-MDPNN Style P 55° Diamond Negative Rake 27°30' Lead page: T 94 ### **Round – Negative** ### C-MRGNR/L Style G Round Negative Rake **page: T95** ### C-MRDNN Style D Round Negative Rake *page: T 95* ### **Square – Negative** #### C-MSKNR/L Style K Square Negative Rake 15° Lead **page: T96** #### C-MSRNR/L Style R Square Negative Rake 15° Lead **page: T96** ### C-MSSNR/L Style S Square Negative Rake 45° Lead **page: T 97** ### **Triangle – Negative** #### C-MTFNR/L Style F Triangle Negative Rake 0° Lead *page: T 98* ### C-MTGNR/L Style G Triangle Negative Rake 0° Lead page: T 98 #### C-MTLNR/L Style L Triangle Negative Rake 5° Reverse Lead page: T 99 C-MWLNR/L Style L Trigon Negative Rake page: T 99 5° Reverse Lead ### Trigon – Negative ### **Hard-Turning – Negative** #### H-MCLNR/L Style L 80° Diamond Negative Rake 5° Reverse Lead page: T 100 ### H-MRGNR/L Style G Round Negative Rake page: T 100 ### Hard-Turning — Negative continued #### H-MSRNR/L Style R Square Negative Rake 15° Lead page: T 101 ### H-MWLNR/L Style L Trigon Negative Rake 5° Reverse Lead page: T 101 ### 80°/100° Diamond – Positive ### C-CCKPR/L Style K 80° Diamond (Using 100° Corner) Positive Rake 15° Lead page: T 102 ### C-CCLPR/L Style L 80° Diamond Positive Rake 5° Reverse Lead page: T 102 ### C-CCRPR/L Style R 80° Diamond (Using 100° Corner) Positive Rake 15° Lead page: T 102 #### C-CCSPR/L Style S 80° Diamond (Using 100° Corner) Positive Rake 45° Lead page: T 103 ### **Round – Positive** #### C-CRGPR/L Style G Round Positive Rake page: T 103 ### Square — Positive ### C-CSDPN Style D Square Positive Rake 45° Lead page: T 104 ### C-CSKPR/L Style K Square Positive Rake 15° Lead page: T 104 #### C-CSRPR/L Style R Square Positive Rake 15° Lead page: T 105 ### C-CSSPR/L Style S Sauare Positive Rake 45° Lead page: T 105 ### Triangle – Positive ### C-CTCPR/L Style C Triangle Positive Rake 0° Lead page: T 106 ### Triangle – Positive continued ### C-CTFPR/L Style F Triangle Positive Rake 0° Lead page: T 106 ### C-CTGPR/L Style G Triangle Positive Rake 0° Lead page: T 107 ### C-CTLPR/L Style F Triangle Positive Rake 5° Reverse Lead page: T 107 ### **Quick-Change Toolholders** ### MCLNR/L 80° Diamond Negative Rake 5º Reverse Lead C6 & C8 Tool Heads page: T 84 #### MRGNR/L Round Negative Rake C6 & C8 Tool Heads page: T84 ### CRGPR/L 45° Grooving/Profiling Replaceable Nest page: T85 ### **CRDPN** Neutral Replaceable Nest page: T 85 TB ## C-MCKNR/L Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Optiona | al Compon | ents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|-----------|--| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MCKNR-16-4C | C-MCKNL-16-4C | CNGN-432 | 1.000 | 1.000 | 5.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCKNR-16-4 | C-MCKNL-16-4 | CNGN-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCKNR-20-4 | C-MCKNL-20-4 | CNGN-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCKNR-20-6 | C-MCKNL-20-6 | CNGN-643 | 1.250 | 1.250 | 6.000 | 1.438 | 1.500 | CSN-643 | S-68 | CL-30 | XNS-59 | TK-00510 | NL-68L | CL-12 | CSN-633 | | C-MCKNR-24-6 | C-MCKNL-24-6 | CNGN-643 | 1.500 | 1.500 | 8.000 | 1.438 | 2.000 | CSN-643 | S-68 | CL-30 | XNS-59 | TK-00510 | NL-68L | CL-12 | CSN-633 | st Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-MCLNR/L Style L / 80° Diamond / Negative Rake / 5° Reverse Lead Right-Hand Toolhodler Shown | | | | | Dimensions (inches) | | | | | | | | | | | | |---------------|---------------|----------|-------|---------------------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|-----------|--| | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option: | al Compon | ents | | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MCLNR-16-4C | C-MCLNL-16-4C | CNGN-432 | 1.000 | 1.000 | 5.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCLNR-16-4 | C-MCLNL-16-4 | CNGN-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCLNR-20-4 | C-MCLNL-20-4 | CNGN-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | C-MCLNR-20-6 | C-MCLNL-20-6 | CNGN-643 | 1.250 | 1.250 | 6.000 | 1.500 | 1.500 | CSN-643 | S-68 | CL-30 | XNS-59 | TK-00510 | NL-68L | CL-12 | CSN-633 | | C-MCLNR-24-6 | C-MCLNL-24-6 | CNGN-643 | 1.500 | 1.500 | 8.000 | 1.500 | 2.000 | CSN-643 | S-68 | CL-30 | XNS-59 | TK-00510 | NL-68L | CL-12 | CSN-633 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## C-MCRNR/L Style R / 80° Diamond (Using 100° Corner) / Negative Rake / 75° Lead Angle Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| mm) | | S | tandard Co | mponent | ts | | Option | al Compo | onents | |-----------------|-----------------|-------------|----|-----|-----------|-----|----|-----------|------------|---------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | c | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | | 5/ ₁₆ " Insert
Shim Seat | | C-MCRNR-2525M12 | C-MCRNL-2525M12 | CNGN-120408 | 25 | 25 | 150 | 32 | 32 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 | CSN-433 | | C-MCRNR-2525P12 | C-MCRNL-2525P12 | CNGN-120408 | 25 | 25 | 170 | 32 | 32 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 | CSN-433 | | C-MCRNR-3232P12 | C-MCRNL-3232P12 | CNGN-120408 | 32 | 32 | 170 | 32 | 40 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 | CSN-433 | | C-MCRNR-3232P19 | C-MCRNL-3232P19 | CNGN-190612 | 32 | 32 | 170 | 38 | 40 | CSN-643 | S-68M | CLM-30 | STCM-4 | TK-02751 | NLM-68L | CLM-12 | CSN-633 | | C-MCRNR-4040R19 | C-MCRNL-4040R19 | CNGN-190612 | 40 | 40 | 200 | 38 | 50 | CSN-643 | S-68M | CLM-30 | STCM-4 | TK-02751 | NLM-68L | CLM-12 | CSN-633 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ ## C-MCSNR/L Right-Hand Toolholder Shown | | | | | Dimensions (mm) | | | | | | | | and roomon | | - | | |-----------------|-----------------|-------------|----|-----------------|-----------|-----|----|-----------|------------|--------|-------------|-----------------|---------------|----------|--| | Part N | lumber | Gage | | Dim | ensions (| mm) | | Si | tandard Co | mponen | ts | | Option | al Compo | onents | | Right Hand | Left Hand | Inserts | A | В | c | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MCSNR-2525M12 | C-MCSNL-2525M12 | CNGN-120408 | 25 | 25 | 150 | 32 | 23 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 |
CSN-433 | | C-MCSNR-2525P12 | C-MCSNL-2525P12 | CNGN-120408 | 25 | 25 | 170 | 32 | 23 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 | CSN-433 | | C-MCSNR-3232P12 | C-MCSNL-3232P12 | CNGN-120408 | 32 | 32 | 170 | 32 | 29 | CSN-453 | S-46M | CLM-12 | STCM-4 | TK-02750 | NLM-46L | CLM-9 | CSN-433 | | C-MCSNR-3232P19 | C-MCSNL-3232P19 | CNGN-190612 | 32 | 32 | 170 | 38 | 25 | CSN-643 | S-68M | CLM-30 | STCM-4 | TK-02751 | NLM-68L | CLM-12 | CSN-633 | | C-MCSNR-4040R19 | C-MCSNL-4040R19 | CNGN-190612 | 40 | 40 | 200 | 38 | 38 | CSN-643 | S-68M | CLM-30 | STCM-4 | TK-02751 | NLM-68L | CLM-12 | CSN-633 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-MDJNR/L Style J / 55° Diamond / Negative Rake / 3° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dime | ensions (| inches) | | S | tandard Co | mponent | is | | Optional Cor | nponents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | А | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | C-MDJNR-16-3C | C-MDJNL-16-3C | DNGN-322 | 1.000 | 1.000 | 5.000 | 1.000 | 1.250 | DSN-333 | S-34 | CL-7 | XNS-36 | TK-00511 | NL-34L | CL-6 | | C-MDJNR-16-3 | C-MDJNL-16-3 | DNGN-322 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | DSN-333 | S-34 | CL-7 | XNS-36 | TK-00511 | NL-34L | CL-6 | | C-MDJNR-20-3 | C-MDJNL-20-3 | DNGN-322 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | DSN-333 | S-34 | CL-7 | XNS-36 | TK-00511 | NL-34L | CL-6 | | C-MDJNR-16-4C | C-MDJNL-16-4C | DNGN-432 | 1.000 | 1.000 | 5.000 | 1.250 | 1.250 | DSN-433 | S-46 | CL-22 | XNS-48 | TK-00512 | NL-46 | CL-20 | | C-MDJNR-16-4 | C-MDJNL-16-4 | DNGN-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.250 | DSN-433 | S-46 | CL-22 | XNS-48 | TK-00512 | NL-46 | CL-20 | | C-MDJNR-20-4 | C-MDJNL-20-4 | DNGN-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | DSN-433 | S-46 | CL-22 | XNS-48 | TK-00512 | NL-46 | CL-20 | | C-MDJNR-24-4 | C-MDJNL-24-4 | DNGN-432 | 1.500 | 1.500 | 8.000 | 1.250 | 2.000 | DSN-433 | S-46 | CL-22 | XNS-48 | TK-00512 | NL-46 | CL-20 | $^{{\}color{blue}*} \ \, \textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # **C-MDPNN** Neutral Toolholder Shown | Part Number | Gage | | Dim | ensions (| inches) | | St | tandard Co | mponent | ts | | Optional Cor | nponents | |---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|--------------|----------| | Neutral | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | C-MDPNN-16-3C | DNGN-322 | 1.000 | 1.000 | 5.000 | 1.500 | 0.500 | DSN-333 | S-34 | CL-12 | XNS-59 | TK-00513 | NL-34L | CL-9 | | C-MDPNN-16-3 | DNGN-322 | 1.000 | 1.000 | 6.000 | 1.500 | 0.500 | DSN-333 | S-34 | CL-12 | XNS-59 | TK-00513 | NL-34L | CL-9 | | C-MDPNN-20-3 | DNGN-322 | 1.250 | 1.250 | 6.000 | 1.500 | 0.625 | DSN-333 | S-34 | CL-12 | XNS-59 | TK-00513 | NL-34L | CL-9 | | C-MDPNN-16-4C | DNGN-432 | 1.000 | 1.000 | 5.000 | 1.625 | 0.500 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | | C-MDPNN-16-4 | DNGN-432 | 1.000 | 1.000 | 6.000 | 1.625 | 0.500 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | | C-MDPNN-20-4 | DNGN-432 | 1.250 | 1.250 | 6.000 | 1.625 | 0.625 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | | C-MDPNN-24-4 | DNGN-432 | 1.500 | 1.500 | 8.000 | 1.625 | 0.750 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### C-MRGNR/L Style G / Round / Negative Rake | | | | | | | | | | | | | | | oraci siro | | | |---------------|---------------|---------|-------|-------|---------|----------|-------|-----------|------------|---------|-------------|-----------------|-----------|------------|---------------------|------------| | Part N | umber | Gage | | Din | nension | s (inche | !s) | S | tandard Co | omponen | ts | | Opt. Comp | onents #1 | Opt. Com | ponents #2 | | Right Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | Insert
Thickness | Shim Seat | | C-MRGNR-16-3C | C-MRGNL-16-3C | RNGN-33 | 1.000 | 1.000 | 5.000 | 1.000 | 1.250 | RSN-32 | S-34 | CL-7 | XNS-36 | TK-00515 | NL-34L | CL-6 | 1/8" | RSN-33 | | C-MRGNR-16-3 | C-MRGNL-16-3 | RNGN-33 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | RSN-32 | S-34 | CL-7 | XNS-36 | TK-00515 | NL-34L | CL-6 | 1/8" | RSN-33 | | C-MRGNR-20-3 | C-MRGNL-20-3 | RNGN-33 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | RSN-32 | S-34 | CL-7 | XNS-36 | TK-00515 | NL-34L | CL-6 | 1/8" | RSN-33 | | C-MRGNR-16-4C | C-MRGNL-16-4C | RNGN-45 | 1.000 | 1.000 | 5.000 | 1.190 | 1.250 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | 3 / 16 " | IRSN-45 | | C-MRGNR-16-4 | C-MRGNL-16-4 | RNGN-45 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | 3 / 16 " | IRSN-45 | | C-MRGNR-20-4 | C-MRGNL-20-4 | RNGN-45 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | 3 / 16 " | IRSN-45 | | C-MRGNR-24-4 | C-MRGNL-24-4 | RNGN-45 | 1.500 | 1.500 | 8.000 | 1.190 | 2.000 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | 3 / 16 " | IRSN-45 | | C-MRGNR-16-5C | C-MRGNL-16-5C | RNGN-55 | 1.000 | 1.000 | 5.000 | 1.380 | 1.250 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | NSP-5 | CL-9 | - | - | | C-MRGNR-16-5 | C-MRGNL-16-5 | RNGN-55 | 1.000 | 1.000 | 6.000 | 1.380 | 1.250 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | NSP-5 | CL-9 | - | - | | C-MRGNR-20-5 | C-MRGNL-20-5 | RNGN-55 | 1.250 | 1.250 | 6.000 | 1.380 | 1.500 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | NSP-5 | CL-9 | - | _ | | C-MRGNR-24-5 | C-MRGNL-24-5 | RNGN-55 | 1.500 | 1.500 | 8.000 | 1.380 | 2.000 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | NSP-5 | CL-9 | - | - | | C-MRGNR-16-6C | C-MRGNL-16-6C | RNGN-65 | 1.000 | 1.000 | 5.000 | 1.500 | 1.250 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | NL-68L | CL-12 | - | - | | C-MRGNR-16-6 | C-MRGNL-16-6 | RNGN-65 | 1.000 | 1.000 | 6.000 | 1.500 | 1.250 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | NL-68L | CL-12 | - | - | | C-MRGNR-20-6 | C-MRGNL-20-6 | RNGN-65 | 1.250 | 1.250 | 6.000 | 1.500 | 1.500 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | NL-68L | CL-12 | - | - | | C-MRGNR-24-6 | C-MRGNL-24-6 | RNGN-65 | 1.500 | 1.500 | 8.000 | 1.500 | 2.000 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | NL-68L | CL-12 | - | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### **C-MRDNN** Style D / Round / Negative Rake Opt. Components #1 Opt. Components #2 **Part Number Standard Components** Gage Dimensions (inches) 'Tune-Up F Neutral A B C Ε Kit Insert Inserts **Shim Seat** Seat Screw Clamp Clamp Screw Lock Pin Clamp Thickness Shim Seat CL-7 NL-34L C-MRDNN-16-3C RNGN-33 1.000 1.000 5.000 1.000 0.500 RSN-32 S-34 XNS-36 TK-00515 CL-6 1/8" RSN-33 1.000 1.000 RSN-32 TK-00515 C-MRDNN-16-3 RNGN-33 6.000 1.000 0.500 S-34 CL-7 XNS-36 NL-34L CL-6 1/8" RSN-33 S-34 RSN-33 1.000 RSN-32 CL-7 NL-34L C-MRDNN-20-3 RNGN-33 1.250 1.250 6.000 0.625 XNS-36 TK-00515 CL-6 1/8" C-MRDNN-16-4C RNGN-45 1.000 1.000 5.000 1.375 0.500 IRSN-43 S-46 CL-12 XNS-59 TK-00516 NL-46L CL-9 3/16" IRSN-45 C-MRDNN-16-4 RNGN-45 1.000 1.000 6.000 1.375 0.500 IRSN-43 S-46 CL-12 XNS-59 TK-00516 NL-46L CL-9 3/16" IRSN-45 C-MRDNN-20-4 RNGN-45 1.250 1.250 6.000 1.375 0.625 IRSN-43 S-46 CL-12 XNS-59 TK-00516 NL-46L CL-9 3/16" IRSN-45 C-MRDNN-24-4 RNGN-45 1.500 1.500 8.000 1.375 0.750 IRSN-43 S-46 CL-12 XNS-59 TK-00516 NL-46L CL-9 3/16" IRSN-45 C-MRDNN-16-5C RNGN-55 1.000 1.000 5.000 1.375 0.500 RSN-53 S-58 CL-12 XNS-59 TK-00517 NSP-5 CL-9 C-MRDNN-16-5 RNGN-55 1.000 1.000 6.000 1.375 0.500 RSN-53 S-58 CL-12 XNS-59 TK-00517 NSP-5 CL-9 RSN-53 S-58 CL-12 XNS-59 TK-00517 CL-9 RNGN-55 1.250 1.250 6.000 1.375 0.625 NSP-5 C-MRDNN-20-5 C-MRDNN-24-5 RNGN-55 1.500 1.500 8.000 1.375 0.750 RSN-53 S-58 CL-12 XNS-59 TK-00517 NSP-5 CL-9 5.000 CL-30 C-MRDNN-16-6C RNGN-65 1.000 1.000 1.562 0.500 RSN-63 S-68 XNS-59 TK-00518 NL-68L CL-12 RNGN-65 C-MRDNN-16-6 1.000 1.000 6.000 1.562 0.500 RSN-63 S-68 CL-30 XNS-59 TK-00518 NL-68L CL-12 C-MRDNN-20-6 RNGN-65 1.250 1.250 6.000 1.562 0.625 RSN-63 S-68 CL-30 XNS-59 TK-00518 NL-68L CL-12 RNGN-65 1.562 RSN-63 CL-30 XNS-59 TK-00518 NL-68L C-MRDNN-24-6 1.500 8.000 TB Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-MSKNR/L Style K / Square / Negative Rake / 15° Lead | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|----------|----------|---------------------------------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ "Insert
Shim Seat | | C-MSKNR-16-4C | C-MSKNL-16-4C | SNGN-432 | 1.000 | 1.000 | 5.000 | 1.219 | 1.250 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-16-4 | C-MSKNL-16-4 | SNGN-432 | 1.000 | 1.000 | 6.000 | 1.219 | 1.250 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-20-4 | C-MSKNL-20-4 | SNGN-432 | 1.250 | 1.250 | 6.000 | 1.219 | 1.500 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-20-5 | C-MSKNL-20-5 | SNGN-543 | 1.250 | 1.250 | 6.000 | 1.438 | 1.500 | SSN-533 | S-58 | CL-12
 XNS-59 | TK-00520 | NL-58 | CL-9 | _ | | C-MSKNR-24-5 | C-MSKNL-24-5 | SNGN-543 | 1.500 | 1.500 | 8.000 | 1.438 | 2.000 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | _ | | C-MSKNR-20-6 | C-MSKNL-20-6 | SNGN-643 | 1.250 | 1.250 | 6.000 | 1.547 | 1.500 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | | C-MSKNR-24-6 | C-MSKNL-24-6 | SNGN-643 | 1.500 | 1.500 | 8.000 | 1.547 | 2.000 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | $^{{}^*\ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # C-MSRNR/L Style R / Square / Negative Rake / 15° Lead | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MSRNR-16-4C | C-MSRNL-16-4C | SNGN-432 | 1.000 | 1.000 | 5.000 | 1.234 | 1.125 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSRNR-16-4 | C-MSRNL-16-4 | SNGN-432 | 1.000 | 1.000 | 6.000 | 1.234 | 1.125 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSRNR-20-4 | C-MSRNL-20-4 | SNGN-432 | 1.250 | 1.250 | 6.000 | 1.234 | 1.375 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSRNR-20-5 | C-MSRNL-20-5 | SNGN-543 | 1.250 | 1.250 | 6.000 | 1.469 | 1.343 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | _ | | C-MSRNR-24-5 | C-MSRNL-24-5 | SNGN-543 | 1.500 | 1.500 | 8.000 | 1.469 | 1.843 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | _ | | C-MSRNR-20-6 | C-MSRNL-20-6 | SNGN-643 | 1.250 | 1.250 | 6.000 | 1.500 | 1.312 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | | C-MSRNR-24-6 | C-MSRNL-24-6 | SNGN-643 | 1.500 | 1.500 | 8.000 | 1.500 | 1.812 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} The lock pin option can NOT be used with this shim. ^{**} The lock pin option can NOT be used with this shim. # C-MSSNR/L | | | | | | | | | | | | | unu roomoi | | | | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|----------|---------------------------------------| | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option | al Compo | nents | | Right Hand | Left Hand | Inserts | A | В | c | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ "Insert
Shim Seat | | C-MSKNR-16-4C | C-MSKNL-16-4C | SNGN-432 | 1.000 | 1.000 | 5.000 | 1.234 | 0.906 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-16-4 | C-MSKNL-16-4 | SNGN-432 | 1.000 | 1.000 | 6.000 | 1.234 | 0.906 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-20-4 | C-MSKNL-20-4 | SNGN-432 | 1.250 | 1.250 | 6.000 | 1.234 | 1.156 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | C-MSKNR-20-5 | C-MSKNL-20-5 | SNGN-543 | 1.250 | 1.250 | 6.000 | 1.375 | 1.078 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | - | | C-MSKNR-24-5 | C-MSKNL-24-5 | SNGN-543 | 1.500 | 1.500 | 8.000 | 1.375 | 1.578 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | _ | | C-MSKNR-20-6 | C-MSKNL-20-6 | SNGN-643 | 1.250 | 1.250 | 6.000 | 1.484 | 1.000 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | | C-MSKNR-24-6 | C-MSKNL-24-6 | SNGN-643 | 1.500 | 1.500 | 8.000 | 1.484 | 1.500 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | **ISSN-623 | $^{^{*}}$ Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} The lock pin option can NOT be used with this shim. # C-MTFNR/L Style F / Triangle / Negative Rake / 0° Lead | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MTFNR-16-3C | C-MTFNL-16-3C | TNGN-332 | 1.000 | 1.000 | 5.000 | 0.938 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | _ | | C-MTFNR-16-3 | C-MTFNL-16-3 | TNGN-332 | 1.000 | 1.000 | 6.000 | 0.938 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | _ | | C-MTFNR-20-3 | C-MTFNL-20-3 | TNGN-332 | 1.250 | 1.250 | 6.000 | 0.938 | 1.500 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | _ | | C-MTFNR-16-4C | C-MTFNL-16-4C | TNGN-432 | 1.000 | 1.000 | 5.000 | 1.219 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTFNR-16-4 | C-MTFNL-16-4 | TNGN-432 | 1.000 | 1.000 | 6.000 | 1.219 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTFNR-20-4 | C-MTFNL-20-4 | TNGN-432 | 1.250 | 1.250 | 6.000 | 1.219 | 1.500 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTFNR-24-4 | C-MTFNL-24-4 | TNGN-432 | 1.500 | 1.500 | 8.000 | 1.219 | 2.000 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # C-MTGNR/L Style G / Triangle / Negative Rake / 0° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|----------|----------|---------------------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/16" Insert
Shim Seat | | C-MTGNR-16-3C | C-MTGNL-16-3C | TNGN-332 | 1.000 | 1.000 | 5.000 | 1.109 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | _ | | C-MTGNR-16-3 | C-MTGNL-16-3 | TNGN-332 | 1.000 | 1.000 | 6.000 | 1.109 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | - | | C-MTGNR-20-3 | C-MTGNL-20-3 | TNGN-332 | 1.250 | 1.250 | 6.000 | 1.109 | 1.500 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | - | | C-MTGNR-16-4C | C-MTGNL-16-4C | TNGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTGNR-16-4 | C-MTGNL-16-4 | TNGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTGNR-20-4 | C-MTGNL-20-4 | TNGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTGNR-24-4 | C-MTGNL-24-4 | TNGN-432 | 1.500 | 1.500 | 8.000 | 1.188 | 2.000 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-MTLNR/L | Right-Hand | Toolholder | Shown | |------------|------------|-------| |------------|------------|-------| | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | C-MTLNR-16-3C | C-MTLNL-16-3C | TNGN-332 | 1.000 | 1.000 | 5.000 | 1.109 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | _ | | C-MTLNR-16-3 | C-MTLNL-16-3 | TNGN-332 | 1.000 | 1.000 | 6.000 | 1.109 | 1.250 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | - | | C-MTLNR-20-3 | C-MTLNL-20-3 | TNGN-332 | 1.250 | 1.250 | 6.000 | 1.109 | 1.500 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | - | | C-MTLNR-16-4C | C-MTLNL-16-4C | TNGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTLNR-16-4 | C-MTLNL-16-4 | TNGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTLNR-20-4 | C-MTLNL-20-4 | TNGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | | C-MTLNR-24-4 | C-MTLNL-24-4 | TNGN-432 | 1.500 | 1.500 | 8.000 | 1.188 | 2.000 | ITSN-453 | S-46 | CL-12 | XNS-59 | TK-00523 | NL-46L | CL-9 | ITSN-433 | $^{{}^*\ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # C-MWLNR/L Style L / Trigon / Negative Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Stand | ard Compon | ents | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|------------|------------|-------------
-----------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-MWLNR-12-3B | C-MWLNL-12-3B | WNGA-332 | 0.750 | 0.750 | 4.500 | 1.000 | 1.000 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | C-MWLNR-16-3 | C-MWLNL-16-3 | WNGA-332 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | C-MWLNR-20-3 | C-MWLNL-20-3 | WNGA-332 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | C-MWLNR-24-3 | C-MWLNL-24-3 | WNGA-332 | 1.500 | 1.500 | 8.000 | 1.000 | 2.000 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | C-MWLNR-12-4B | C-MWLNL-12-4B | WNGA-432 | 0.750 | 0.750 | 4.500 | 1.078 | 1.000 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | C-MWLNR-16-4 | C-MWLNL-16-4 | WNGA-432 | 1.000 | 1.000 | 6.000 | 1.078 | 1.250 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | C-MWLNR-20-4 | C-MWLNL-20-4 | WNGA-432 | 1.250 | 1.250 | 6.000 | 1.078 | 1.500 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | C-MWLNR-24-4 | C-MWLNL-24-4 | WNGA-432 | 1.500 | 1.500 | 8.000 | 1.078 | 2.000 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## H-MCLNR/L Style L / 80° Diamond / Negative Rake / 5° Reverse Lead | Part N | umber | Gage | | Dim | ensions (| inches) | | S | tandard Co | omponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|---------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | c | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ " Insert
Shim Seat | | H-MCLNR-16-4C | H-MCLNL-16-4C | CNGN-432 | 1.000 | 1.000 | 5.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | H-MCLNR-16-4 | H-MCLNL-16-4 | CNGN-432 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | | H-MCLNR-20-4 | H-MCLNL-20-4 | CNGN-432 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | CSN-453 | S-46 | CL-12 | XNS-59 | TK-00509 | NL-46L | CL-9 | CSN-433 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ### H-MRGNR/L Style G / Round / Negative Rake Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option | al Compo | nents | |---------------|---------------|---------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|----------|--| | Right Hand | Left Hand | Inserts | A | В | c | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 3/ ₁₆ " Insert
Shim Seat | | H-MRGNR-16-4C | H-MRGNL-16-4C | RNGN-45 | 1.000 | 1.000 | 5.000 | 1.190 | 1.250 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | IRSN-45 | | H-MRGNR-16-4 | H-MRGNL-16-4 | RNGN-45 | 1.000 | 1.000 | 6.000 | 1.190 | 1.250 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | IRSN-45 | | H-MRGNR-20-4 | H-MRGNL-20-4 | RNGN-45 | 1.250 | 1.250 | 6.000 | 1.190 | 1.500 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | IRSN-45 | | H-MRGNR-24-4 | H-MRGNL-24-4 | RNGN-45 | 1.500 | 1.500 | 8.000 | 1.190 | 2.000 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | NL-46L | CL-9 | IRSN-45 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. These toolholders are for hard turning with ceramic inserts using industry standard components. # H-MSRNR/L Style R / Square / Negative Rake / 15° Lead | Part I | Number | Gage | | Dim | ensions (| inches) | | S | tandard Co | mponen | ts | | Option | al Compo | nents | |---------------|---------------|----------|-------|-------|-----------|---------|-------|-----------|------------|--------|-------------|-----------------|----------|----------|---------------------------------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | 5/ ₁₆ "Insert
Shim Seat | | H-MSRNR-16-4C | H-MSRNL-16-4C | SNGN-432 | 1.000 | 1.000 | 5.000 | 1.234 | 1.125 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | H-MSRNR-16-4 | H-MSRNL-16-4 | SNGN-432 | 1.000 | 1.000 | 6.000 | 1.234 | 1.125 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | | H-MSRNR-20-4 | H-MSRNL-20-4 | SNGN-432 | 1.250 | 1.250 | 6.000 | 1.234 | 1.375 | ISSN-453 | S-46 | CL-12 | XNS-59 | TK-00519 | NL-46L | CL-9 | ISSN-433 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # H-MWLNR/L Style L / Trigon / Negative Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Stand | ard Compon | ents | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|------------|------------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | H-MWLNR-12-3B | H-MWLNL-12-3B | WNGA-332 | 0.750 | 0.750 | 4.500 | 1.000 | 1.000 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | H-MWLNR-16-3 | H-MWLNL-16-3 | WNGA-332 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | H-MWLNR-20-3 | H-MWLNL-20-3 | WNGA-332 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | H-MWLNR-24-3 | H-MWLNL-24-3 | WNGA-332 | 1.500 | 1.500 | 8.000 | 1.000 | 2.000 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | H-MWLNR-12-4B | H-MWLNL-12-4B | WNGA-432 | 0.750 | 0.750 | 4.500 | 1.078 | 1.000 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | H-MWLNR-16-4 | H-MWLNL-16-4 | WNGA-432 | 1.000 | 1.000 | 6.000 | 1.078 | 1.250 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | H-MWLNR-20-4 | H-MWLNL-20-4 | WNGA-432 | 1.250 | 1.250 | 6.000 | 1.078 | 1.500 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | | H-MWLNR-24-4 | H-MWLNL-24-4 | WNGA-432 | 1.500 | 1.500 | 8.000 | 1.078 | 2.000 | IWSN-453 | NL-46L | CL-20 | XNS-48 | TK-00766 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. These toolholders are for hard turning with ceramic inserts using industry standard components. ## C-CCKPR/L Right-Hand Toolholder Shown | Part | Number | Gage | | Dim | nensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|---------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | А | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CCKPR-16-4C | C-CCKPL-16-4C | CPGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCKPR-16-4 | C-CCKPL-16-4 | CPGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCKPR-20-4 | C-CCKPL-20-4 | CPGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CCLPR/L Style L / 80° Diamond / Positive Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | ents | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CCLPR-16-4C | C-CCLPL-16-4C | CPGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | SP-49 | #4-40x 3/8 F.C.H.S. | CL-12 | XNS-59 | TK-00501 | | C-CCLPR-16-4 | C-CCLPL-16-4 | CPGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | SP-49 | #4-40x 3/8 F.C.H.S. | CL-12 | XNS-59 | TK-00501 | | C-CCLPR-20-4 | C-CCLPL-20-4 | CPGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | SP-49 | #4-40x 3/8 F.C.H.S. | CL-12 | XNS-59 | TK-00501 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CCRPR/L Style R / 80° Diamond (Using 100° Corner) / Positive Rake / 15° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | nensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|---------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CCRPR-16-4C | C-CCRPL-16-4C | CPGN-432 | 1.000 | 1.000 | 5.000 | 1.250 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCRPR-16-4 | C-CCRPL-16-4 | CPGN-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCRPR-20-4 | C-CCRPL-20-4 | CPGN-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CCSPR/L ### Style S / 80° Diamond (Using 100° Corner) / Positive Rake / 45° Lead Right-Hand Toolholder Shown | Part | Number | Gage | | Dim | nensions (inc | :hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|---------------
-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Insorts | A | В | C | E | F | | | | | *Tune-Up
Kit | | | | Inserts | | | | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | | | C-CCSPR-16-4C | C-CCSPL-16-4C | CPGN-432 | 1.000 | 1.000 | 5.000 | 1.250 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCSPR-16-4 | C-CCSPL-16-4 | CPGN-432 | 1.000 | 1.000 | 6.000 | 1.250 | 1.250 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | C-CCSPR-20-4 | C-CCSPL-20-4 | CPGN-432 | 1.250 | 1.250 | 6.000 | 1.250 | 1.500 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CRGPR/L Style G / Round / Positive Rake Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|---------|-------|-------|--------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | | А | В | C | E | F | | | | | *Tune-Up
Kit | | | | Inserts | | | | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | | | C-CRGPR-16-3C | C-CRGPL-16-3C | RPGN-32 | 1.000 | 1.000 | 5.000 | 1.000 | 1.250 | SP-34 | #2-56x 1/4 S.H.C.S. | CL-7 | XNS-36 | TK-00502 | | C-CRGPR-16-3 | C-CRGPL-16-3 | RPGN-32 | 1.000 | 1.000 | 6.000 | 1.000 | 1.250 | SP-34 | #2-56x 1/4 S.H.C.S. | CL-7 | XNS-36 | TK-00502 | | C-CRGPR-20-3 | C-CRGPL-20-3 | RPGN-32 | 1.250 | 1.250 | 6.000 | 1.000 | 1.500 | SP-34 | #2-56x 1/4 S.H.C.S. | CL-7 | XNS-36 | TK-00502 | | C-CRGPR-16-4C | C-CRGPL-16-4C | RPGN-43 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | | C-CRGPR-16-4 | C-CRGPL-16-4 | RPGN-43 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | | C-CRGPR-20-4 | C-CRGPL-20-4 | RPGN-43 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | | C-CRGPR-24-4 | C-CRGPL-24-4 | RPGN-43 | 1.500 | 1.500 | 8.000 | 1.188 | 2.000 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # **C-CSDPN** ## Style D / Square / Positive Rake / 45° Lead | Neutral Touriouel Shown | | | | | | | | | | | | | | | |-------------------------|----------|-------|-------|---------------|-------|-------|-----------|---------------------|---------|-------------|-----------------|--|--|--| | Part Number | Gage | | Dim | nensions (inc | :hes) | | | Standard | Compone | nts | | | | | | Neutral | Inserts | A | | | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | | | | C-CSDPN-16-4C | SPGN-432 | 1.000 | 1.000 | 5.000 | 1.391 | 0.500 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | | | | C-CSDPN-16-4 | SPGN-432 | 1.000 | 1.000 | 6.000 | 1.391 | 0.500 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | | | | C-CSDPN-20-4 | SPGN-432 | 1.250 | 1.250 | 6.000 | 1.391 | 0.625 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CSKPR/L Style K / Square / Positive Rake / 15° Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (inc | hes) | | Standard Components | | | | | |---------------|---------------|----------|-------|-------|--------------|-----------|------------|---------------------|---------------------|-----------------|--------|----------| | Right Hand | Left Hand | Inserts | А | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | | | C-CSKPR-16-4C | C-CSKPL-16-4C | SPGN-432 | 1.000 | 1.000 | 5.000 | 1.219 | 1.250 | SP-41 | #4-40X 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | C-CSKPR-16-4 | C-CSKPL-16-4 | SPGN-432 | 1.000 | 1.000 | 6.000 | 1.219 | 1.250 | SP-41 | #4-40X 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | C-CSKPR-20-4 | C-CSKPL-20-4 | SPGN-432 | 1.250 | 1.250 | 6.000 | 1.219 | 1.500 | SP-41 | #4-40X 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CSRPR/L | | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |--------|----------|---------------|----------|----------------------------------|-------|--------------|-------|-------|---------------------------|---------------------|---------|-------------|-----------------| | Right | t Hand | Left Hand | Inserts | Α | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CSRP | PR-16-4C | C-CSRPL-16-4C | SPGN-432 | 1.000 | 1.000 | 5.000 | 1.234 | 1.125 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | C-CSRF | PR-16-4 | C-CSRPL-16-4 | SPGN-432 | 1.000 | 1.000 | 6.000 | 1.234 | 1.125 | SP-41 #4-40x 3/8 F.H.C.S. | | CL-12 | XNS-59 | TK-00504 | | C-CSRP | PR-20-4 | C-CSRPL-20-4 | SPGN-432 | 32 1.250 1.250 6.000 1.234 1.375 | | | | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CSSPR/L Style S / Square / Positive Rake / 45° Lead Right-Hand Toolholder Shown | | Part N | umber | Gage | | Dim | nensions (inc | :hes) | | | Standard | Compone | nts | | |---------|---------|---------------|----------|-------|-------|---------------|-------|-------|--------------|---------------------|---------|-------------|-----------------| | Right | Hand | Left Hand | Inserts | A | В | C | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | | | | inscres | | | | | | Jillili Jeat | Jeat Jack | Clamp | ciamp screw | | | C-CSSPR | R-16-4C | C-CSSPL-16-4C | SPGN-432 | 1.000 | 1.000 | 5.000 | 1.234 | 0.906 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | C-CSSPI | R-16-4 | C-CSSPL-16-4 | SPGN-432 | 1.000 | 1.000 | 6.000 | 1.234 | 0.906 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | C-CSSPI | R-20-4 | C-CSSPL-20-4 | SPGN-432 | 1.250 | 1.250 | 6.000 | 1.234 | 1.156 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CTCPR/L ## Style C / Triangle / Positive Rake / 0° Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CTCPR-16-3C | C-CTCPL-16-3C | TPGN-322 | 1.000 | 1.000 | 5.000 | 1.125 | 1.047 | SP3A | #4-40x 3/8 F.H.C.S. | CL-22 | XNS-48 | TK-00505 | | C-CTCPR-16-3 | C-CTCPL-16-3 | TPGN-322 | 1.000 | 1.000 | 6.000 | 1.125 | 1.047 | SP3A | #4-40x 3/8 F.H.C.S. | CL-22 | XNS-48 | TK-00505 | | C-CTCPR-20-3 | C-CTCPL-20-3 | TPGN-322 | 1.250 | 1.250 | 6.000 | 1.125 | 1.297 | SP3A | #4-40x 3/8 F.H.C.S. | CL-22 | XNS-48 | TK-00505 | | C-CTCPR-16-4C | C-CTCPL-16-4C | TPGN-432 | 1.000 | 1.000 | 5.000 | 1.375 | 1.078 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-30 | XNS-59 | TK-00506 | | C-CTCPR-16-4 | C-CTCPL-16-4 | TPGN-432 | 1.000 | 1.000 | 6.000 | 1.375 | 1.078 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-30 | XNS-59 | TK-00506 | | C-CTCPR-20-4 | C-CTCPL-20-4 | TPGN-432 | 1.250 | 1.250 | 6.000 | 1.375 | 1.328 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-30 | XNS-59 | TK-00506 | | C-CTCPR-24-4 | C-CTCPL-24-4 | TPGN-432 | 1.500 | 1.500 | 8.000 | 1.375 | 1.578 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-30 | XNS-59 | TK-00506 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-CTFPR/L Style F / Triangle / Positive Rake / 0° Lead Right-Hand Toolholder Shown | Part N | lumber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|--------------|-------|-------------|-----------------|---------------------|---------|--------|----------| | Right Hand | Left Hand | Inserts | | | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | | | | | C-CTFPR-16-3C | C-CTFPL-16-3C | TPGN-322 | 1.000 | 1.000 | 5.000 | 0.938 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTFPR-16-3 | C-CTFPL-16-3 | TPGN-322 | 1.000 | 1.000 | 6.000 | 0.938 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTFPR-20-3 | C-CTFPL-20-3 | TPGN-322 | 1.250 | 1.250 | 6.000 | 0.938 | 1.500 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTFPR-16-4C | C-CTFPL-16-4C | TPGN-432 | 1.000 | 1.000 | 5.000 | 1.219 | 1.250 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTFPR-16-4 | C-CTFPL-16-4 | TPGN-432 | 1.000 | 1.000 | 6.000 | 1.219 | 1.250 | SP4 | | | XNS-59 | TK-00508 | | C-CTFPR-20-4 | C-CTFPL-20-4 | TPGN-432 | 1.250 | 1.250 | 6.000 | 1.219 | 1.500 | SP4 | 6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTFPR-24-4 | C-CTFPL-24-4 | TPGN-432 | 1.500 | 1.500 | 8.000 | 1.219 | 2.000 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## C-CTGPR/L Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CTGPR-16-3C | C-CTGPL-16-3C | TPGN-322 | 1.000 |
1.000 | 5.000 | 1.109 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTGPR-16-3 | C-CTGPL-16-3 | TPGN-322 | 1.000 | 1.000 | 6.000 | 1.109 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTGPR-20-3 | C-CTGPL-20-3 | TPGN-322 | 1.250 | 1.250 | 6.000 | 1.109 | 1.500 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTGPR-16-4C | C-CTGPL-16-4C | TPGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTGPR-16-4 | C-CTGPL-16-4 | TPGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | SP-4 | | | XNS-59 | TK-00508 | | C-CTGPR-20-4 | C-CTGPL-20-4 | TPGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTGPR-24-4 | C-CTGPL-24-4 | TPGN-432 | 1.500 | 1.500 | 8.000 | 1.188 | 2.000 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # C-CTLPR/L Style F / Triangle / Positive Rake / 5° Reverse Lead Right-Hand Toolholder Shown | Part N | umber | Gage | | Dim | ensions (inc | hes) | | | Standard | Compone | nts | | |---------------|---------------|----------|-------|-------|--------------|-------|-------|-----------|---------------------|---------|-------------|-----------------| | Right Hand | Left Hand | Inserts | A | В | С | E | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | C-CTLPR-16-3C | C-CTLPL-16-3C | TPGN-322 | 1.000 | 1.000 | 5.000 | 1.109 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTLPR-16-3 | C-CTLPL-16-3 | TPGN-322 | 1.000 | 1.000 | 6.000 | 1.109 | 1.250 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTLPR-20-3 | C-CTLPL-20-3 | TPGN-322 | 1.250 | 1.250 | 6.000 | 1.109 | 1.500 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | C-CTLPR-16-4C | C-CTLPL-16-4C | TPGN-432 | 1.000 | 1.000 | 5.000 | 1.188 | 1.250 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTLPR-16-4 | C-CTLPL-16-4 | TPGN-432 | 1.000 | 1.000 | 6.000 | 1.188 | 1.250 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTLPR-20-4 | C-CTLPL-20-4 | TPGN-432 | 1.250 | 1.250 | 6.000 | 1.188 | 1.500 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | C-CTLPR-24-4 | C-CTLPL-24-4 | TPGN-432 | 1.500 | 1.500 | 8.000 | 1.188 | 2.000 | SP4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # **Industry-Standard Boring Bars for Carbide Inserts** The boring bar systems and cartridges in this catalog are designed around industry standard hardware. This gives complete interchangeability with other tooling components and minimizes spare parts inventories. Most bars incorporate "through the bar" coolant feed with directable outlet nozzle. Greenleaf uses heat-treated alloy steel to ensure a consistent, highquality product for maximum life performance. Custom engineered tooling is a Greenleaf specialty and we will be pleased to quote your special requirements for boring. Additionally, Greenleaf has the capability to quote boring bars made of heavy metal shanks or "No-Chat" material. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. # **Boring Bar Identification System** The angles shown in parentheses are the angles as shown in the ANSI standard. # **Pictorial Index** ### 80° Diamond - Negative ### SB-MCKNR/L Style K 80° Diamond (Using 100° Corner) Negative Rake 15° Lead page: T 114 #### SB-MCLNR/L Style L 80° Diamond Negative Rake 5° Reverse Lead page: T 114 ### Triangle - Negative ### SB-MTFNR/L Triangle Negative Rake 0° Lead page: T 117 ### SB-MTKNR/L Style K Triangle Negative Rake 15° Lead page: T 117 ### 80° Diamond – Positive ### SB-CCKPR/L Style K 80° Diamond (Using 100° Corner) Positive Rake 15° Lead page: T 119 ### SB-CCLPR/L Style L 80° Diamond Positive Rake 5° Reverse Lead page: T 119 ### 55° Diamond - Negative ### SB-MDUNR/L Style U 55° Diamond Negative Rake 3° Reverse Lead page: T 115 ### Trigon - Negative ### SB-MWLNR/L Style L 80° Trigon Negative Rake 5° Reverse Lead page: T 118 ### **Square – Positive** #### SB-CSKPR/L Style K Square Positive Rake 15° Lead page: T 120 ### **Square – Negative** ### SB-MSKNR/L Style K Sauare Negative Rake 15° Lead page: T 116 ### **Triangle – Positive** ### SB-CTFPR/L Style F Triangle Positive Rake 0° Lead page: T 121 # SB-MCKNR/L Right-Hand Boring Bar Shown | Style K / 80° Diamond (Using 100° Corner) | /Negative Rake / 15° Lead | |---|---------------------------| |---|---------------------------| | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponents | | | Optional Con | nponents | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|----------|----------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | Shim | | SB-MCKNR-16-4 | SB-MCKNL-16-4 | CNGA-432 | 1.250 | 1.000 | 12.000 | 0.640 | CL-20 | XNS-47 | - | NL-44 | TK-00657 | - | - | | SB-MCKNR-20-4 | SB-MCKNL-20-4 | CNGA-432 | 1.468 | 1.250 | 13.750 | 0.765 | CL-20 | XNS-47 | CSNB-433 | NL-46A | TK-00658 | S-46S | - | | SB-MCKNR-24-4 | SB-MCKNL-24-4 | CNGA-432 | 1.718 | 1.500 | 13.750 | 0.890 | CL-20 | XNS-47 | CSN-432 | NL-46 | TK-00659 | S-46S | - | | SB-MCKNR-28-4 | SB-MCKNL-28-4 | CNGA-432 | 1.968 | 1.750 | 13.750 | 1.015 | CL-20 | XNS-47 | CSN-432 | NL-46 | TK-00659 | S-46S | - | | SB-MCKNR-32-6 | SB-MCKNL-32-6 | CNGA-643 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | | SB-MCKNR-36-6 | SB-MCKNL-36-6 | CNGA-643 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | | SB-MCKNR-40-6 | SB-MCKNL-40-6 | CNGA-643 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | | | 1 | | | | | | | | | • | • | | | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # SB-MCLNR/L Style L / 80° Diamond / Negative Rake / 5° Reverse Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Cor | nponents | | | Optional Cor | nponents | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|----------|----------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | Shim | | SB-MCLNR-16-4 | SB-MCLNL-16-4 | CNGA-432 | 1.375 | 1.000 | 12.000 | 0.640 | CL-20 | XNS-47 | - | NL-44 | TK-00657 | - | - | | SB-MCLNR-20-4 | SB-MCLNL-20-4 | CNGA-432 | 1.600 | 1.250 | 13.750 | 0.765 | CL-20 | XNS-47 | CSNB-433 | NL-46A | TK-00658 | S-46S | - | | SB-MCLNR-24-4 | SB-MCLNL-24-4 | CNGA-432 | 1.800 | 1.500 | 13.750 | 0.890 | CL-20 | XNS-47 | CSN-432 | NL-46 | TK-00659 | S-46S | - | | SB-MCLNR-28-4 | SB-MCLNL-28-4 | CNGA-432 | 1.925 | 1.750 | 13.750 | 1.015 | CL-20 | XNS-47 | CSN-432 | NL-46 | TK-00659 | S-46S | - | | SB-MCLNR-32-6 | SB-MCLNL-32-6 | CNGA-643 | 2.475 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | | SB-MCLNR-36-6 | SB-MCLNL-36-6 | CNGA-643 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | | SB-MCLNR-40-6 | SB-MCLNL-40-6 | CNGA-643 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | CSN-633 | NL-68 | TK-00546 | S-68S | CSN-642 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # SB-MDUNR/L Style U / 55° Diamond / Negative Rake / 3° Reverse Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponents | | | Optional Components | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|----------|----------|-----------------|---------------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | | SB-MDUNR-20-4 | SB-MDUNL-20-4 | DNGA-432 | 2.000 | 1.250 | 13.750 | 1.000 | CL-12 | XNS-59 | DSN-433 | NL-46 | TK-00660 | S-46S | | SB-MDUNR-24-4 | SB-MDUNL-24-4 | DNGA-432 | 2.250 | 1.500 | 13.750 | 1.125 | CL-12 | XNS-59 | DSN-433 | NL-46 | TK-00660 | S-46S | | SB-MDUNR-28-4 | SB-MDUNL-28-4 | DNGA-432 | 2.500 | 1.750 | 13.750 | 1.250 | CL-12 | XNS-59 | DSN-433 | NL-46 | TK-00660 | S-46S | | SB-MDUNR-28-5 | SB-MDUNL-28-5 | DNGA-543 | 2.750 | 1.750 | 13.750 | 1.375 | CL-30 | XNS-510 | DSN-533 | NL-58 | TK-00722 | S-58S | | SB-MDUNR-32-5 | SB-MDUNL-32-5 | DNGA-543 | 3.000 | 2.000 | 16.000 | 1.500 | CL-30 | XNS-510 | DSN-533 | NL-58 | TK-00722 | S-58S | | SB-MDUNR-36-5 | SB-MDUNL-36-5 | DNGA-543 | 3.250 | 2.250 | 16.000 | 1.625 | CL-30 | XNS-510 | DSN-533 | NL-58 | TK-00722 | S-58S | | SB-MDUNR-40-5 | SB-MDUNL-40-5 | DNGA-543 | 3.500 | 2.500 | 16.000 | 1.750 | CL-30 | XNS-510 | DSN-533 | NL-58 | TK-00722 | S-58S | $^{{}^*\ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # SB-MSKNR/L Style K / Square / Negative Rake / 15° Lead | Part N | umber | Gage | | Dime | nsions (inch | es) | S | tandard Co | mponents | | | Optional Cor | nponents | |---------------|---------------|----------
-----------------|-------|--------------|-------|-------|-------------|-----------|----------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | Shim | | SB-MSKNR-16-4 | SB-MSKNL-16-4 | SNGA-432 | 1.350 | 1.000 | 12.000 | 0.640 | CL-6 | XNS-36 | - | NL-44 | TK-00661 | - | _ | | SB-MSKNR-20-4 | SB-MSKNL-20-4 | SNGA-432 | 1.600 | 1.250 | 13.750 | 0.765 | CL-9 | XNS-59 | ISSNB-433 | NL-46 | TK-00662 | S-46S | - | | SB-MSKNR-24-4 | SB-MSKNL-24-4 | SNGA-432 | 1.718 | 1.500 | 13.750 | 0.890 | CL-9 | XNS-59 | ISSN-433 | NL-46 | TK-00558 | S-46S | - | | SB-MSKNR-28-4 | SB-MSKNL-28-4 | SNGA-432 | 1.968 | 1.750 | 13.750 | 1.015 | CL-9 | XNS-59 | ISSN-433 | NL-46 | TK-00558 | S-46S | - | | SB-MSKNR-32-5 | SB-MSKNL-32-5 | SNGA-543 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | SSN-533 | NL-58 | TK-00559 | S-58S | ISSN-543 | | SB-MSKNR-36-5 | SB-MSKNL-36-5 | SNGA-543 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | SSN-533 | NL-58 | TK-00559 | S-58S | ISSN-543 | | SB-MSKNR-32-6 | SB-MSKNL-32-6 | SNGA-643 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | ISSN-633 | NL-68 | TK-00560 | S-68S | ISSN-643 | | SB-MSKNR-36-6 | SB-MSKNL-36-6 | SNGA-643 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | ISSN-633 | NL-68 | TK-00560 | S-68S | ISSN-643 | | SB-MSKNR-40-6 | SB-MSKNL-40-6 | SNGA-643 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | ISSN-633 | NL-68 | TK-00560 | S-68S | ISSN-643 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ # SB-MTFNR/L Style F / Triangle / Negative Rake / 0° Lead | Part Number | | Gage | | Dime | nsions (inch | ies) | S | tandard Coi | mponents | | | Optional Cor | nponents | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|----------|----------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | Shim | | SB-MTFNR-16-3 | SB-MTFNL-16-3 | TNGA-332 | 1.325 | 1.000 | 12.000 | 0.640 | CL-6 | XNS-35 | - | NL-33L | TK-00663 | - | _ | | SB-MTFNR-20-3 | SB-MTFNL-20-3 | TNGA-332 | 1.550 | 1.250 | 13.750 | 0.765 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | _ | | SB-MTFNR-24-3 | SB-MTFNL-24-3 | TNGA-332 | 1.825 | 1.500 | 13.750 | 0.890 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | - | | SB-MTFNR-28-3 | SB-MTFNL-28-3 | TNGA-332 | 1.968 | 1.750 | 13.750 | 1.015 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | - | | SB-MTFNR-24-4 | SB-MTFNL-24-4 | TNGA-432 | 1.968 | 1.500 | 13.750 | 1.031 | CL-9 | XNS-59 | ITSN-432 | NL-46 | TK-00665 | S-46S | TS-424 | | SB-MTFNR-28-4 | SB-MTFNL-28-4 | TNGA-432 | 2.218 | 1.750 | 13.750 | 1.156 | CL-9 | XNS-59 | ITSN-432 | NL-46 | TK-00665 | S-46S | TS-424 | | SB-MTFNR-32-5 | SB-MTFNL-32-5 | TNGA-543 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | - | | SB-MTFNR-36-5 | SB-MTFNL-36-5 | TNGA-543 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | - | | SB-MTFNR-40-5 | SB-MTFNL-40-5 | TNGA-543 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # SB-MTKNR/L | Part Number | | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponents | | | Optional Cor | nponents | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|----------|----------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Lock Pin | *Tune-Up
Kit | Shim Screw | Shim | | SB-MTKNR-16-3 | SB-MTKNL-16-3 | TNGA-332 | 1.325 | 1.000 | 12.000 | 0.640 | CL-6 | XNS-35 | - | NL-33L | TK-00663 | _ | - | | SB-MTKNR-20-3 | SB-MTKNL-20-3 | TNGA-332 | 1.550 | 1.250 | 13.750 | 0.765 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | - | | SB-MTKNR-24-3 | SB-MTKNL-24-3 | TNGA-332 | 1825 | 1.500 | 13.750 | 0.890 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | - | | SB-MTKNR-28-3 | SB-MTKNL-28-3 | TNGA-332 | 1.968 | 1.750 | 13.750 | 1.015 | CL-6 | XNS-35 | ITSN-322 | NL-34L | TK-00664 | S-34S | - | | SB-MTKNR-24-4 | SB-MTKNL-24-4 | TNGA-432 | 1.968 | 1.500 | 13.750 | 1.031 | CL-9 | XNS-59 | ITSN-432 | NL-46 | TK-00665 | S-46S | TS-424 | | SB-MTKNR-28-4 | SB-MTKNL-28-4 | TNGA-432 | 2.218 | 1.750 | 13.750 | 1.156 | CL-9 | XNS-59 | ITSN-432 | NL-46 | TK-00665 | S-46S | TS-424 | | SB-MTKNR-32-5 | SB-MTKNL-32-5 | TNGA-543 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | _ | | SB-MTKNR-36-5 | SB-MTKNL-36-5 | TNGA-543 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | - | | SB-MTKNR-40-5 | SB-MTKNL-40-5 | TNGA-543 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | ITSN-533 | NL-58 | TK-00569 | S-58S | _ | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # SB-MWLNR/L Style L / 80° Trigon / Negative Rake / 5° Reverse Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | St | tandard Co | mponent | 5 | | Optional Components | |-----------------|----------------------------|----------|-----------------|-------|--------------|-------|----------|------------|---------|-------------|-----------------|---------------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | Seat | | † SB-MWLNR-12-3 | SB-MWLNL-12-3 [†] | WNMA-332 | 1.025 | 0.750 | 10.000 | 0.515 | - | NL-33L | CL-6 | XNS-36 | TK-00796 | - | | SB-MWLNR-16-3 | SB-MWLNL-16-3 | WNMA-332 | 1.200 | 1.000 | 12.000 | 0.640 | _ | NL-33L | CL-6 | XNS-36 | TK-00796 | - | | SB-MWLNR-20-3 | SB-MWLNL-20-3 | WNMA-332 | 1.470 | 1.250 | 13.750 | 0.765 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | IWSN-332 | | SB-MWLNR-24-3 | SB-MWLNL-24-3 | WNMA-332 | 1.780 | 1.500 | 13.750 | 0.890 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | IWSN-332 | | SB-MWLNR-16-4 | SB-MWLNL-16-4 | WNMA-432 | 1.280 | 1.000 | 12.000 | 0.640 | - | NL-44 | CL-20 | XNS-47 | TK-00657 | - | | SB-MWLNR-20-4 | SB-MWLNL-20-4 | WNMA-432 | 1.530 | 1.250 | 13.750 | 0.765 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | _ | | SB-MWLNR-24-4 | SB-MWLNL-24-4 | WNMA-432 | 1.780 | 1.500 | 13.750 | 0.890 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | - | $^{{\}color{blue}*} \ \, \textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ ## SB-CCKPR/L Style K / 80° Diamond (Using 100° Corner) / Positive Rake / 15° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | | St | andard Co | mponents | | | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|-----------|----------------------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Shim Screw | Chipbreaker | *Tune-Up
Kit | | SB-CCKPR-16-4 | SB-CCKPL-16-4 | CPGN-422 | 1.250 | 1.000 | 12.000 | 0.640 | CL-7 | XNS-35 | - | - | CBDC-415L | TK-00820 | | SB-CCKPR-20-4 | SB-CCKPL-20-4 | CPGN-422 | 1.468 | 1.250 | 13.750 | 0.765 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-415L | TK-00921 | | SB-CCKPR-24-4 | SB-CCKPL-24-4 | CPGN-422 | 1.718 | 1.500 | 13.750 | 0.890 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-415L | TK-00921 | | SB-CCKPR-28-4 | SB-CCKPL-28-4 | CPGN-422 | 1.968 | 1.750 | 13.750 | 1.015 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-415L | TK-00921 | | SB-CCKPR-32-6 | SB-CCKPL-32-6 | CPGN-633 | 2.468 | 2.000 | 16.000 | 1.281 | CL-30 | XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-615G | TK-00920 | | SB-CCKPR-36-6 | SB-CCKPL-36-6 | CPGN-633 | 2.718 | 2.250 | 16.000 | 1.406 | CL-30 | XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-615G | TK-00920 | | SB-CCKPR-40-6 | SB-CCKPL-40-6 | CPGN-633 | 2.968 | 2.500 | 16.000 | 1.531 | CL-30 | XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-615G | TK-00920 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ # SB-CCLPR/L Style L / 80° Diamond / Positive Rake / 5° Reverse Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | | St | andard Co | mponents | | | |---------------|---------------|----------|-----------------|----------------|--------------|-------|-------|-------------|-----------|----------------------|-------------|-----------------| | | | dage | | D 1111C | | | | | | | | | | Right Hand | Left Hand | Inserts | Minimum
Bore | A | c | F | Clamp | Clamp Screw | Shim | Shim Screw | Chipbreaker | *Tune-Up
Kit | | SB-CCKPR-16-4 | SB-CCKPL-16-4 | CPGN-422 | 1.250 | 1.000 | 12.000 | 0.640 | CL-7 | XNS-35 | - | _ | CBDC-4L | TK-00705 | | SB-CCKPR-20-4 | SB-CCKPL-20-4 | CPGN-422 | 1.468 | 1.250 | 13.750 | 0.765 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-4L | TK-00746 | | SB-CCKPR-24-4 | SB-CCKPL-24-4 | CPGN-422 | 1.718 | 1.500 | 13.750 | 0.890 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-4L | TK-00746 | | SB-CCKPR-28-4 | SB-CCKPL-28-4 | CPGN-422 | 1.968 | 1.750 | 13.750 | 1.015 | CL-20 | XNS-47 | CSP-422 | #4-40 x 1/4 F.H.C.S. | CBDC-4L | TK-00746 | | SB-CCKPR-32-6 | SB-CCKPL-32-6 | CPGN-633 | 2.468 | 2.000 | 16.000 | 1.281 | CL-30 | XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-6G | TK-00532 | | SB-CCKPR-36-6 | SB-CCKPL-36-6 | CPGN-633 | 2.718 | 2.250 | 16.000 | 1.406 | CL-30 | XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-6G | TK-00532 | | SB-CCKPR-40-6 | SB-CCKPL-40-6 | CPGN-633 | 2.968 | 2.500 | 16.000 | 1.531 | CL-30 |
XNS-59 | CSP-632 | #5-40 x 3/8 F.H.C.S. | CBDC-6G | TK-00532 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # SB-CSKPR/L Style K / Square / Positive Rake / 15° Lead | Part N | umber | Gage | | Dime | nsions (inch | es) | | St | andard Coi | nponents | | | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|------------|----------------------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Shim Screw | Chipbreaker | *Tune-Up
Kit | | SB-CSKPR-16-4 | SB-CSKPL-16-4 | SPGN-422 | 1.250 | 1.000 | 12.000 | 0.640 | CL-7 | XNS-35 | - | - | CBS-4G | TK-00757 | | SB-CSKPR-20-4 | SB-CSKPL-20-4 | SPGN-422 | 1.468 | 1.250 | 13.750 | 0.765 | CL-20 | XNS-47 | - | - | CBS-4G | TK-00776 | | SB-CSKPR-24-4 | SB-CSKPL-24-4 | SPGN-422 | 1.718 | 1.500 | 13.750 | 0.890 | CL-20 | XNS-47 | SP-40 | #6-32 x 1/2 F.H.C.S. | CBS-4G | TK-02168 | | SB-CSKPR-28-4 | SB-CSKPL-28-4 | SPGN-422 | 1.968 | 1.750 | 13.750 | 1.015 | CL-20 | XNS-47 | SP-40 | #6-32 x 1/2 F.H.C.S. | CBS-4G | TK-02168 | | SB-CSKPR-32-6 | SB-CSKPL-32-6 | SPGN-633 | 2.468 | 2.000 | 16.000 | 1.281 | CL-30 | XNS-59 | SP-60 | #8-32 x 1/2 F.H.C.S. | CBS-6G | TK-00825 | | SB-CSKPR-36-6 | SB-CSKPL-36-6 | SPGN-633 | 2.718 | 2.250 | 16.000 | 1.406 | CL-30 | XNS-59 | SP-60 | #8-32 x 1/2 F.H.C.S. | CBS-6G | TK-00825 | | SB-CSKPR-40-6 | SB-CSKPL-40-6 | SPGN-633 | 2.968 | 2.500 | 16.000 | 1.531 | CL-30 | XNS-59 | SP-60 | #8-32 x 1/2 F.H.C.S. | CBS-6G | TK-00825 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ # SB-CTFPR/L Style F / Triangle / Positive Rake / 0° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | | St | andard Co | mponents | | | |---------------|---------------|----------|-----------------|-------|--------------|-------|-------|-------------|-----------|----------------------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Clamp Screw | Shim | Shim Screw | Chipbreaker | *Tune-Up
Kit | | SB-CTFPR-16-3 | SB-CTFPL-16-3 | TPGN-322 | 1.250 | 1.000 | 12.000 | 0.640 | CL-7 | XNS-35 | - | _ | CBT-3G | TK-00655 | | SB-CTFPR-20-3 | SB-CTFPL-20-3 | TPGN-322 | 1.468 | 1.250 | 13.750 | 0.765 | CL-6 | XNS-35 | TSP-321 | #4-40 x 3/8 F.H.C.S. | CBT-3G | TK-00653 | | SB-CTFPR-24-3 | SB-CTFPL-24-3 | TPGN-322 | 1.718 | 1.500 | 13.750 | 0.890 | CL-6 | XNS-35 | TSP-321 | #4-40 x 3/8 F.H.C.S. | CBT-3G | TK-00653 | | SB-CTFPR-28-3 | SB-CTFPL-28-3 | TPGN-322 | 1.968 | 1.750 | 13.750 | 1.015 | CL-6 | XNS-35 | TSP-321 | #4-40 x 3/8 F.H.C.S. | CBT-3G | TK-00653 | | SB-CTFPR-24-4 | SB-CTFPL-24-4 | TPGN-432 | 1.968 | 1.500 | 13.750 | 1.031 | CL-12 | XNS-58 | SP-4 | #6-32 x 1/2 F.H.C.S. | CBT-4G | TK-00654 | | SB-CTFPR-28-4 | SB-CTFPL-28-4 | TPGN-432 | 2.218 | 1.750 | 13.750 | 1.156 | CL-12 | XNS-58 | SP-4 | #6-32 x 1/2 F.H.C.S. | CBT-4G | TK-00654 | | SB-CTFPR-32-5 | SB-CTFPL-32-5 | TPGN-543 | 2.468 | 2.000 | 16.000 | 1.281 | CL-12 | XNS-510 | SP-5 | #8-32 x 1/2 F.H.C.S. | CBT-5G | TK-00656 | | SB-CTFPR-36-5 | SB-CTFPL-36-5 | TPGN-543 | 2.718 | 2.250 | 16.000 | 1.406 | CL-12 | XNS-510 | SP-5 | #8-32 x 1/2 F.H.C.S. | CBT-5G | TK-00656 | | SB-CTFPR-40-5 | SB-CTFPL-40-5 | TPGN-543 | 2.968 | 2.500 | 16.000 | 1.531 | CL-12 | XNS-510 | SP-5 | #8-32 x 1/2 F.H.C.S. | CBT-5G | TK-00656 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # S-STFNR/L Style F / Triangle / Positive Rake / 0° Lead Right-Hand Boring Bar Shown | Part N | Part Number Gage | | | | Dimensions (inches) | | Std Components | | |--------------|------------------|----------|-----------------|-------|---------------------|-------|------------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Insert Screw | *Tune-Up
Kit | | S-STFNR-6-2 | S-STFNL-6-2 | TP-41 | 0.500 | 0.375 | 6.000 | 0.250 | #4-40 x 1/4 BHCS | TK-00922 | | S-STFNR-8-2 | S-STFNL-8-2 | TP-41 | 0.625 | 0.500 | 8.000 | 0.312 | #4-40 x 1/4 BHCS | TK-00922 | | S-STFNR-10-2 | S-STFNL-10-2 | TP-41 | 0.750 | 0.625 | 10.000 | 0.375 | #4-40 x 1/4 BHCS | TK-00922 | | S-STFNR-12-3 | S-STFNL-12-3 | TPGA-322 | 1.000 | 0.750 | 10.000 | 0.500 | #6-32 x 3/8 BHCS | TK-00923 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # S-SWFCR/L Style F / Screw-On Trigon / Solid Steel / 0° Lead | Part N | umber | Gage | | ı | Dimensions (inches) | | Std Components | | |-----------------|-----------------|------------|-----------------|-------|---------------------|-----|----------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | F | C | Insert Screw | *Tune-Up
Kit | | S06-SWFCR-2-050 | S06-SWFCL-2-050 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 5 | PT-589T | TK-00804 | | S08-SWFCR-2-060 | S08-SWFCL-2-060 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 6 | PT-589T | TK-00804 | | S08-SWFCR-3-025 | S08-SWFCL-3-025 | WCMT-32.51 | 0.625 | 0.500 | 0.312 | 2.5 | PT-559T | TK-00807 | | S08-SWFCR-3-060 | S08-SWFCL-3-060 | WCMT-32.51 | 0.625 | 0.500 | 0.312 | 6 | PT-559T | TK-00807 | | S10-SWFCR-3-040 | S10-SWFCL-3-040 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 4 | PT-559T | TK-00807 | | S10-SWFCR-3-070 | S10-SWFCL-3-070 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 7 | PT-559T | TK-00807 | | S12-SWFCR-3-040 | S12-SWFCL-3-040 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 4 | PT-559T | TK-00807 | | S12-SWFCR-3-080 | S12-SWFCL-3-080 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 8 | PT-559T | TK-00807 | | S16-SWFCR-3-050 | S16-SWFCL-3-050 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 5 | PT-559T | TK-00807 | | S16-SWFCR-3-100 | S16-SWFCL-3-100 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 10 | PT-559T | TK-00807 | | S20-SWFCR-3-120 | S20-SWFCL-3-120 | WCMT-32.51 | 1.344 | 1.250 | 0.672 | 12 | PT-559T | TK-00807 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. # C-SWFCR/L | | | Trana borning bar 311 | | | | | | | |-----------------|-----------------|-----------------------|-----------------|-------|---------------------|--------|----------------|-----------------| | Part N | umber | Gage | | | Dimensions (inches) | | Std Components | | | Right Hand | Left Hand | Inserts | Minimum
Bore | A | F | C | Insert Screw | *Tune-Up
Kit | | C06-SWFCR-2-060 | C06-SWFCL-2-060 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 6.000 | PT-589T | TK-00804 | | C06-SWFCR-2-080 | C06-SWFCL-2-080 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 8.000 | PT-589T | TK-00804 | | C08-SWFCR-2-060 | C08-SWFCL-2-060 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 6.000 | PT-589T | TK-00804 | | C08-SWFCR-2-080 | C08-SWFCL-2-080 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 8.000 | PT-589T | TK-00804 | | C10-SWFCR-3-060 | C10-SWFCL-3-060 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 6.000 | PT-559T | TK-00807 | | C10-SWFCR-3-100 | C10-SWFCL-3-100 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 10.000 | PT-559T | TK-00807 | | C12-SWFCR-3-060 | C12-SWFCL-3-060 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 6.000 | PT-559T | TK-00807 | | C12-SWFCR-3-100 | C12-SWFCL-3-100 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 10.000 | PT-559T | TK-00807 | | C16-SWFCR-3-060 | C16-SWFCL-3-060 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 6.000 | PT-559T | TK-00807 | | C16-SWFCR-3-120 | C16-SWFCL-3-120 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 12.000 | PT-559T | TK-00807 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. These boring bars do not use coolant. # S-SWLCR/L Style L / Screw-On Trigon / Solid Steel / 5° Reverse Lead | Part Number | | Gage | Gage | | Dimensions (inches) | | | | |-----------------|-----------------|------------|-----------------|-------|---------------------|--------|--------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | F | C | Insert Screw | *Tune-Up
Kit | | S06-SWLCR-2-050 | S06-SWLCL-2-050 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 5.000 | PT-589T | TK-00804 | | S08-SWLCR-2-060 | S08-SWLCL-2-060 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 6.000 | PT-589T | TK-00804 | | S08-SWLCR-3-025 | S08-SWLCL-3-025 | WCMT-32.51 | 0.625 | 0.500 | 0.312 | 2.500 | PT-559T | TK-00807 | | S08-SWLCR-3-060 | S08-SWLCL-3-060 | WCMT-32.51 | 0.625 | 0.500 | 0.312 | 6.000 | PT-559T | TK-00807 | | S10-SWLCR-3-040 | S10-SWLCL-3-040 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 4.000 | PT-559T | TK-00807 | | S10-SWLCR-3-070 | S10-SWLCL-3-070 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 7.000 | PT-559T | TK-00807 | | S12-SWLCR-3-040 | S12-SWLCL-3-040 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 4.000 | PT-559T | TK-00807 | | S12-SWLCR-3-080 | S12-SWLCL-3-080 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 8.000 | PT-559T | TK-00807 | | S16-SWLCR-3-050 | S16-SWLCL-3-050 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 5.000 | PT-559T | TK-00807 | | S16-SWLCR-3-100 | S16-SWLCL-3-100 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 10.000 | PT-559T | TK-00807 | | S20-SWLCR-3-120 | S20-SWLCL-3-120 | WCMT-32.51 | 1.344 | 1.250 | 0.672 | 12.000 | PT-559T | TK-00807 | Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## C-SWLCR/L Right-Hand Boring Bar Shown | Part Number | | Gage | | Dimensions (inches) | | | Std Components | | |-----------------|-----------------|------------|-----------------|---------------------|-------|--------|----------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | F | C | Insert Screw | *Tune-Up
Kit | | C06-SWLCR-2-060 | C06-SWLCL-2-060 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 6.000 | PT-589T | TK-00804 | | C06-SWLCR-2-080 | C06-SWLCL-2-080 | WCMT-21.51 | 0.438 | 0.375 | 0.219 | 8.000 | PT-589T | TK-00804 | | C08-SWLCR-2-060 | C08-SWLCL-2-060 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 6.000 | PT-589T | TK-00804 | |
C08-SWLCR-2-080 | C08-SWLCL-2-080 | WCMT-21.51 | 0.563 | 0.500 | 0.281 | 8.000 | PT-589T | TK-00804 | | C10-SWLCR-3-060 | C10-SWLCL-3-060 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 6.000 | PT-559T | TK-00807 | | C10-SWLCR-3-100 | C10-SWLCL-3-100 | WCMT-32.51 | 0.719 | 0.625 | 0.359 | 10.000 | PT-559T | TK-00807 | | C12-SWLCR-3-060 | C12-SWLCL-3-060 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 6.000 | PT-559T | TK-00807 | | C12-SWLCR-3-100 | C12-SWLCL-3-100 | WCMT-32.51 | 0.844 | 0.750 | 0.422 | 10.000 | PT-559T | TK-00807 | | C16-SWLCR-3-060 | C16-SWLCL-3-060 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 6.000 | PT-559T | TK-00807 | | C16-SWLCR-3-120 | C16-SWLCL-3-120 | WCMT-32.51 | 1.094 | 1.000 | 0.547 | 12.000 | PT-559T | TK-00807 | Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. These boring bars do not use coolant. ## **Boring Bars for Ceramic Inserts** This section contains boring bars using the ceramic inserts most often used by industry. In addition to tempered-steel bars, Greenleaf also can supply Heavy Metal or "No Chat" high-density steel bars that can reduce, and sometimes eliminate, "chatter" for those applications that require a longer reach. Greenleaf's boring bar capability includes numerous additional styles not shown in this catalog. Contact us if you do not see the bar you need. Our special design and build services can be counted on to meet your individual needs. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ## Ceramic-Insert Boring Bar Identification System The angles shown in parentheses are the angles as shown in the ANSI standard. ## **Pictorial Index** #### 80°/100° Diamond - Negative #### S-CCKNR/L Style K 80° Diamond (Using 100° Corner) Negative Rake 15° Lead page: T 130 #### S-CCLNR/L Style L 80° Diamond Negative Rake 5° Reverse Lead page: T 130 #### **Square** – **Negative** #### S-CSKNR/L Style K Square Negative Rake 15° Lead page: T 132 #### S-CSSNR/L Style S Square Negative Rake 45° Lead page: T 132 ### 80° Diamond – Positive #### S-CCFPR/L Style F Heavy Metal Shank 80° Diamond Positive Rake 0° Lead page: T 134 #### S-CCKPR/L Style K 80° Diamond (Using 100° Corner) Positive Rake 15° Lead page: T 134 #### S-CCLPR/L Style L 80° Diamond Positive Rake 5° Reverse Lead page: T 134 #### S-CCLPR/L Style L Heavy Metal Shank 80° Diamond Positive Rake 5° Reverse Lead page: T 135 ### 55° Diamond - Negative #### S-CDLNR/L Style L 55° Diamond Negative Rake 5° Reverse Lead page: T 131 #### S-CTFNR/L Style F Triangle Negative Rake 0° Lead page: T 133 #### **Round – Negative** #### S-CRGNR/L Style G Round Negative Rake page: T 131 ### Trigon - Negative **Triangle – Negative** #### S-CWLNR/L Style L Trigon Negative Rake 5° Reverse Lead page: T 133 #### **Round – Positive** #### **Square – Positive** #### **Triangle – Positive** ## S-CCKNR/L Right-Hand Boring Bar Shown | Style K / 80° Diamond (Using 100° C | comer) / Negative Rake / 15° Lead | |-------------------------------------|-----------------------------------| |-------------------------------------|-----------------------------------| | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponent | S | | Optional Co | nponents | |----------------|----------------|----------|-----------------|-------|--------------|-------|---------|------------|---------|-------------|-----------------|-------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S30-CCKNR-16-4 | S30-CCKNL-16-4 | CNGN-432 | 1.250 | 1.000 | 12.000 | 0.640 | _ | _ | CL-12 | XNS-58 | TK-00670 | NL-44 | CL-9 | | S40-CCKNR-24-4 | S40-CCKNL-24-4 | CNGN-432 | 1.718 | 1.500 | 13.750 | 0.890 | CSN-433 | S-46S | CL-12 | XNS-59 | TK-00677 | NL-46 | CL-9 | | S40-CCKNR-32-4 | S40-CCKNL-32-4 | CNGN-432 | 2.468 | 2.000 | 16.000 | 1.140 | CSN-433 | S-46 | CL-12 | XNS-59 | TK-00678 | NL-46 | CL-9 | | S50-CCKNR-32-6 | S50-CCKNL-32-6 | CNGN-643 | 2.468 | 2.000 | 16.000 | 1.281 | CSN-633 | S-68 | CL-30 | XNS-59 | TK-00711 | NL-68 | CL-12 | | S50-CCKNR-40-6 | S50-CCKNL-40-6 | CNGN-643 | 2.968 | 2.500 | 16.000 | 1.781 | CSN-633 | S-68 | CL-30 | XNS-59 | TK-00711 | NL-68 | CL-12 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CCLNR/L Style L / 80° Diamond / Negative Rake / 5° Reverse Lead | | | | | | | | | nigiit- | nunu bun | iiy bur siiov | VII | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|---------|------------|----------|---------------|-----------------|--------------|----------| | Part N | umber | Gage | | Dimer | nsions (inch | es) | Si | tandard Co | mponents | 5 | | Optional Con | nponents | | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S30-CCLNR-16-4 | S30-CCLNL-16-4 | CNGN-432 | 1.375 | 1.000 | 12.000 | 0.640 | - | _ | CL-12 | XNS-58 | TK-00670 | NL-44 | CL-9 | | S40-CCLNR-24-4 | S40-CCLNL-24-4 | CNGN-432 | 1.800 | 1.500 | 13.750 | 0.890 | CSN-433 | S-46 | CL-12 | XNS-59 | TK-00678 | NL-46 | CL-9 | | S40-CCLNR-32-4 | S40-CCLNL-32-4 | CNGN-432 | 2.475 | 2.000 | 16.000 | 1.140 | CSN-433 | S-46 | CL-12 | XNS-59 | TK-00678 | NL-46 | CL-9 | | S50-CCLNR-32-6 | S50-CCLNL-32-6 | CNGN-643 | 2.475 | 2.000 | 16.000 | 1.281 | CSN-633 | S-68 | CL-30 | XNS-59 | TK-00711 | NL-68 | CL-12 | | S50-CCLNR-40-6 | S50-CCLNL-40-6 | CNGN-643 | 2.968 | 2.500 | 16.000 | 1.781 | CSN-633 | S-68 | CL-30 | XNS-59 | TK-00711 | NL-68 | CL-12 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CDLNR/L Style L / 55° Diamond / Negative Rake / 5° Reverse Lead | Part N | umber | Gage | | Dime | nsions (inch | es) | S | tandard Co | mponent | s | | Optional Cor | mponents | |----------------|----------------|----------|-----------------|-------|--------------|-------|---------|------------|---------|-------------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S35-CDLNR-24-3 | S35-CDLNL-24-3 | DNGN-322 | 2.250 | 1.500 | 13.750 | 1.000 | DSN-333 | S-34 | CL-12 | XNS-59 | TK-00513 | NL-34L | _ | | S35-CDLNR-32-3 | S35-CDLNL-32-3 | DNGN-322 | 2.500 | 2.000 | 16.000 | 1.250 | DSN-333 | S-34 | CL-12 | XNS-59 | TK-00513 | NL-34L | - | | S40-CDLNR-32-4 | S40-CDLNL-32-4 | DNGN-432 | 2.750 | 2.000 | 16.000 | 1.375 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | | S40-CDLNR-40-4 | S40-CDLNL-40-4 | DNGN-432 | 3.250 | 2.500 | 16.000 | 1.625 | DSN-433 | S-46 | CL-30 | XNS-59 | TK-00514 | NL-46 | CL-12 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CRGNR/L Style G / Round / Negative Rake | Part N | umber | Gage | | Dim | ensions (i | nches) | 5 | Standard Co | mponent | is | | Opt | tional Compon | ents | |----------------|----------------|---------|-----------------|-------|------------|--------|-----------|-------------|---------|-------------|-----------------|-------|----------------------|---------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Clamp | Combi | | | S30-CRGNR-24-3 | S30-CRGNL-24-3 | RNGN-33 | 3.000 | 1.500 | 13.750 | 1.015 | _ | _ | CL-6 | XNS-36 | TK-00671 | CL-6 | - | _ | | S30-CRGNR-32-3 | S30-CRGNL-32-3 | RNGN-33 | 3.000 | 2.000 | 16.000 | 1.265 | _ | _ | CL-6 | XNS-36 | TK-00671 | CL-6 | - | _ | | S35-CRGNR-32-4 | S35-CRGNL-32-4 | RNGN-43 | 3.500 | 2.000 | 16.000 | 1.281 | IRSN-42 | S-46 | CL-12 | XNS-59 | TK-00674 | CL-9 | 5/16 | No shim | | S35-CRGNR-40-4 | S35-CRGNL-40-4 | RNGN-43 | 3.500 | 2.500 | 16.000 | 1.531 | IRSN-42 | S-46 | CL-12 | XNS-59 | TK-00674 | CL-9 | 5/16 | No shim | | S50-CRGNR-32-4 | S50-CRGNL-32-4 | RNGN-45 | 5.000 | 2.000 | 16.000 | 1.281 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | CL-9 | 3/16 _{†01} | IRSN-45 | | S50-CRGNR-40-4 | S50-CRGNL-40-4 | RNGN-45 | 5.000 | 2.500 | 16.000 | 1.531 | IRSN-43 | S-46 | CL-12 | XNS-59 | TK-00516 | CL-9 | 1/4 | IRSN-44 | | S35-CRGNR-32-5 | S35-CRGNL-32-5 | RNGN-55 | 3.500 | 2.000 | 16.000 | 1.281 | _ | _ | CL-12 | XNS-59 | TK-00675 | CL-9 | 3/16 | RSN-52 | | S35-CRGNR-40-5 | S35-CRGNL-40-5 | RNGN-55 | 3.500 | 2.500 | 16.000 | 1.531 | - | - | CL-12 | XNS-59 | TK-00675 | CL-9 | 3/16 | RSN-52 | | S50-CRGNR-32-5 | S50-CRGNL-32-5 | RNGN-55 | 5.000 | 2.000 | 16.000 | 1.281 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | CL-9 | 3/16 † ₀₁ | RSN-55 | | S50-CRGNR-40-5 | S50-CRGNL-40-5 | RNGN-55 | 5.000 | 2.500 | 16.000 | 1.531 | RSN-53 | S-58 | CL-12 | XNS-59 | TK-00517 | CL-9 | 1/4 | RSN-54 | | S35-CRGNR-32-6 | S35-CRGNL-32-6 | RNGN-65 | 3.500 | 2.000 | 16.000 | 1.281 | _ | - | CL-30 | XNS-59 | TK-00676 | CL-12 | 3/16 | RSN-62 | | S35-CRGNR-40-6 | S35-CRGNL-40-6 | RNGN-65 | 3.500 | 2.500 | 16.000 | 1.531 | - | - | CL-30 | XNS-59 | TK-00676 | CL-12 | 3/16 | RSN-62 | | S50-CRGNR-32-6 | S50-CRGNL-32-6 | RNGN-65 | 5.000 | 2.000 | 16.000 | 1.281 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | CL-12 | 3/16 † ₀₁ | RSN-65 | | S50-CRGNR-40-6 | S50-CRGNL-40-6 | RNGN-65 | 5.000 | 2.500 | 16.000 | 1.531 | RSN-63 | S-68 | CL-30 | XNS-59 | TK-00518 | CL-12 | 1/4 | RSN-64 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. [†] Insert thickness will need to correspond with the proper shim seat thickness. ## S-CSKNR/L Style K / Square /
Negative Rake / 15° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponent | s | | Optional Cor | nponents | |----------------|----------------|----------|-----------------|-------|--------------|-------|----------|------------|---------|-------------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S30-CSKNR-16-4 | S30-CSKNL-16-4 | SNGN-432 | 3.000 | 1.000 | 12.000 | 0.640 | _ | _ | CL-12 | XNS-58 | TK-00672 | NL-44 | CL-9 | | S40-CSKNR-24-4 | S40-CSKNL-24-4 | SNGN-432 | 4.000 | 1.500 | 13.750 | 0.890 | ISSN-433 | S-46 | CL-12 | XNS-59 | TK-00723 | NL-46 | CL-9 | | S40-CSKNR-32-4 | S40-CSKNL-32-4 | SNGN-432 | 4.000 | 2.000 | 16.000 | 1.140 | ISSN-433 | S-46 | CL-12 | XNS-59 | TK-00679 | NL-46 | CL-9 | | S50-CSKNR-32-5 | S50-CSKNL-32-5 | SNGN-543 | 5.000 | 2.000 | 16.000 | 1.281 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | | S50-CSKNR-40-5 | S50-CSKNL-40-5 | SNGN-543 | 5.000 | 2.500 | 16.000 | 1.531 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | | S50-CSKNR-32-6 | S50-CSKNL-32-6 | SNGN-643 | 5.000 | 2.000 | 16.000 | 1.281 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | | S50-CSKNR-40-6 | S50-CSKNL-40-6 | SNGN-643 | 5.000 | 2.500 | 16.000 | 1.531 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ ## S-CSSNR/L Style S / Square / Negative Rake / 45° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | S | tandard Co | mponent | s | | Optional Cor | nponents | |----------------|----------------|----------|-----------------|-------|--------------|-------|----------|------------|---------|-------------|-----------------|--------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S30-CSSNR-16-4 | S30-CSSNL-16-4 | SNGN-432 | 3.000 | 1.000 | 12.000 | 0.640 | _ | _ | CL-12 | XNS-59 | TK-00675 | NL-44 | CL-9 | | S40-CSSNR-24-4 | S40-CSSNL-24-4 | SNGN-432 | 4.000 | 1.500 | 13.750 | 0.890 | ISSN-433 | S-46 | CL-12 | XNS-59 | TK-00679 | NL-46 | CL-9 | | S40-CSSNR-32-4 | S40-CSSNL-32-4 | SNGN-432 | 4.000 | 2.000 | 16.000 | 1.140 | ISSN-433 | S-46 | CL-12 | XNS-59 | TK-00679 | NL-46 | CL-9 | | S50-CSSNR-32-5 | S50-CSSNL-32-5 | SNGN-543 | 5.000 | 2.000 | 16.000 | 1.281 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | | S50-CSSNR-40-5 | S50-CSSNL-40-5 | SNGN-543 | 5.000 | 2.500 | 16.000 | 1.531 | SSN-533 | S-58 | CL-12 | XNS-59 | TK-00520 | NL-58 | CL-9 | | S50-CSSNR-32-6 | S50-CSSNL-32-6 | SNGN-643 | 5.000 | 2.000 | 16.000 | 1.281 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | | S50-CSSNR-40-6 | S50-CSSNL-40-6 | SNGN-643 | 5.000 | 2.500 | 16.000 | 1.531 | ISSN-633 | S-68 | CL-30 | XNS-59 | TK-00521 | NL-68 | CL-12 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CTFNR/L Style F / Triangle / Negative Rake / 0° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | Si | tandard Co | mponent | 5 | | Optional Co | mponents | |----------------|----------------|----------|-----------------|-------|--------------|-------|----------|------------|---------|-------------|-----------------|-------------|----------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Clamp | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | Lock Pin | Clamp | | S30-CTFNR-16-3 | S30-CTFNL-16-3 | TNGN-332 | 3.000 | 1.000 | 12.000 | 0.640 | - | - | CL-7 | XNS-36 | TK-00719 | NL-33L | CL-6 | | S35-CTFNR-24-3 | S35-CTFNL-24-3 | TNGN-332 | 3.500 | 1.500 | 13.750 | 0.890 | ITSN-322 | S-34 | CL-7 | XNS-36 | TK-00522 | NL-34L | CL-6 | | S40-CTFNR-24-4 | S40-CTFNL-24-4 | TNGN-432 | 4.000 | 1.500 | 13.750 | 1.031 | ITSN-432 | S-46 | CL-12 | XNS-59 | TK-00680 | NL-46 | CL-9 | | S40-CTFNR-32-4 | S40-CTFNL-32-4 | TNGN-432 | 4.000 | 2.000 | 16.000 | 1.281 | ITSN-432 | S-46 | CL-12 | XNS-59 | TK-00680 | NL-46 | CL-9 | | S40-CTFNR-40-4 | S40-CTFNL-40-4 | TNGN-432 | 4.000 | 2.500 | 16.000 | 1.531 | ITSN-432 | S-46 | CL-12 | XNS-59 | TK-00680 | NL-46 | CL-9 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## S-CWLNR/L Style L / Trigon / Negative Rake / 5° Reverse Lead | | 90117 11090 | | , | | | | | Right-Hand Bo | ring Bar Shown | | | |----------------|----------------|----------|-------|-------|--------------|-------|-----------|---------------|----------------|-------------|-----------------| | Part N | umber | Gage | | Dime | nsions (inch | ies) | | Standard Co | mponents | | | | Right Hand | Left Hand | Inserts | Bore | | C | F | Shim Seat | Lock Pin | Clamp | Clamp Screw | *Tune-Up
Kit | | S30-CWLNR-16-3 | S30-CWLNL-16-3 | WNGA-332 | 3.000 | 1.000 | 12.000 | 0.640 | - | NL-33L | CL-6 | XNS-36 | TK-00740 | | S35-CWLNR-24-3 | S35-CWLNL-24-3 | WNGA-332 | 3.500 | 1.500 | 13.750 | 0.890 | IWSN-322 | NL-34L | CL-6 | XNS-36 | TK-00777 | | S30-CWLNR-16-4 | S30-CWLNL-16-4 | WNGA-432 | 3.000 | 1.000 | 12.000 | 0.640 | - | NL-44 | CL-20 | XNS-48 | TK-00887 | | S40-CWLNR-24-4 | S40-CWLNL-24-4 | WNGA-432 | 4.000 | 1.500 | 13.750 | 0.890 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | | S40-CWLNR-32-4 | S40-CWLNL-32-4 | WNGA-432 | 4.000 | 2.000 | 16.000 | 1.281 | IWSN-433 | NL-46 | CL-20 | XNS-48 | TK-00759 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## S-CCFPR/L Style F / Heavy Metal Shank / 80° Diamond / Positive Rake / 0° Lead Right-Hand Boring Bar Shown | Part N | umber | Gage | | Dim | ension | s (inche | s) | | Standard Comp | ponents | | | | Optional Co | mponents | |----------------|----------------|----------|--------------|-------|--------|----------|----|-------|----------------------|-------------|-------------|---------------|-----------------|-------------------------------|------------| | Right Hand | Left Hand | Inserts | Min.
Bore | A | C | F | R | Clamp | Clamp Screw | Chipbreaker | Chipbreaker | Eff.
Width | *Tune-Up
Kit | Chip-
breaker [†] | Eff. Width | | S88-CCFPR-12-3 | _ | CPGN-321 | 0.875 | 0.750 | 10.000 | 0.437 | 3° | 33704 | #6-32 x 1/2 B.H.C.S. | . 307378-R | _ | .093" | TK-00682 | 307377-R | 0.062 | | _ | S88-CCFPL-12-3 | CPGN-321 | 0.875 | 0.750 | 10.000 | 0.437 | 3° | 33704 | #6-32 x 1/2 B.H.C.S. | . – | 307378-L | .093" | TK-00681 | 307377-L | 0.062 | | S10-CCFPR-14-3 | _ | CPGN-321 | 1.000 | 0.875 | 10.000 | 0.500 | 2° | 33704 | #6-32 x 1/2 B.H.C.S. | . 307378-R | _ | .093" | TK-00682 | 307379-R | 0.125 | | _ | S10-CCFPL-14-3 | CPGN-321 | 1.000 | 0.875 | 10.000 | 0.500 | 2° | 33704 | #6-32 x 1/2 B.H.C.S. | . — | 307378-L | .093" | TK-00681 | 307379-L | 0.125 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CCKPR/L Style K / 80° Diamond (Using 100° Corner) / Positive Rake / 15° Lead Right-Hand Boring Bar Shown | Part N | umber | Gage | | Dime | nsions (inch | ies) | | Standard Compo | nents | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|-----------|---------------------|-------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | S12-CCKPR-16-4 | S12-CCKPL-16-4 | CPGN-432 | 1.250 | 1.000 | 12.000 | 0.640 | - | _ | CL-22 | XNS-46 | TK-00666 | | S17-CCKPR-24-4 | S17-CCKPL-24-4 | CPGN-432 | 1.718 | 1.500 | 13.750 | 0.890 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | S22-CCKPR-32-4 | S22-CCKPL-32-4 | CPGN-432 | 2.218 | 2.000 | 16.000 | 1.140 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | S27-CCKPR-40-4 | S27-CCKPL-40-4 | CPGN-432 | 2.718 | 2.500 | 16.000 | 1.390 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## S-CCLPR/L Style L / 80° Diamond / Positive Rake / 5° Reverse Lead | | | | | | | | | nigiit-iiaiia boiiiig bai | JIIUWII | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|-----------|---------------------------|---------|-------------|-----------------| | Part N | lumber | Gage | | Dime | nsions (inch | ies) | | Standard Compo | nents | | | | Right Hand | Left Hand | Inserts | Minimum
Bore | A | С | F | | | | | *Tune-Up
Kit | | | | iliserts | | | | | Shim Seat | Seat Screw | Clamp | Clamp Screw | | | S12-CCLPR-16-4 | S12-CCLPL-16-4 | CPGN-432 | 1.250 | 1.000 | 12.000 | 0.640 | - | _ | CL-22 | XNS-46 | TK-00666 | | S17-CCLPR-24-4 | S17-CCLPL-24-4 | CPGN-432 | 1.718 | 1.500 | 13.750 | 0.890 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | | S22-CCLPR-32-4 | S22-CCLPL-32-4 | CPGN-432 | 2.218 | 2.000 | 16.000 | 1.140 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00669 | | S27-CCLPR-40-4 | S27-CCLPL-40-4 | CPGN-432 | 2.718 | 2.500 | 16.000 | 1.390 | SP-49 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00501 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. [†] Specifiy left or right chipbreaker when ordering. (example: 307377-R for right) ## S-CCLPR/L Style L / Heavy Metal Shank / 80° Diamond / Positive Rake / 5° Reverse Lead Right-Hand Boring Bar Shown | Par | Number | Gage | | Din | nension | s (inche | s) | | Standard Comp | onents | | | | Optional Co | omponents | |----------------------|----------------|----------|--------------|-------|---------|----------|----|-------|----------------------|-------------|-------------|-------|-----------------
-------------------------------|------------| | Right Hand Left Hand | | Inserts | Min.
Bore | A | C | F | R | Clamp | Clamp Screw | Chipbreaker | Chipbreaker | Width | *Tune-Up
Kit | Chip-
breaker [†] | Eff. Width | | S88-CCLPR-12- | _ | CPGN-321 | 0.875 | 0.750 | 10.000 | 0.437 | 3° | 33704 | #6-32 x 1/2 B.H.C.S. | 307378-R | _ | .093" | TK-00682 | 307377-R | 0.062 | | _ | S88-CCLPL-12-3 | CPGN-321 | 0.875 | 0.750 | 10.000 | 0.437 | 3° | 33704 | #6-32 x 1/2 B.H.C.S. | _ | 307378-L | .093" | TK-00681 | 307377-L | 0.062 | | S10-CCLPR-14- | _ | CPGN-321 | 1.000 | 0.875 | 10.000 | 0.500 | 2° | 33704 | #6-32 x 1/2 B.H.C.S. | 307378-R | _ | .093" | TK-00682 | 307379-R | 0.125 | | _ | S10-CCLPL-14-3 | CPGN-321 | 1.000 | 0.875 | 10.000 | 0.500 | 2° | 33704 | #6-32 x 1/2 B.H.C.S. | _ | 307378-L | .093" | TK-00681 | 307379-R | 0.125 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-CRGPR/L Style G / Round / Positive Rake | Part N | umber | Gage | | Dime | nsions (inch | es) | | Standard Compo | nents | | | |----------------|----------------|---------|-----------------|-------|--------------|-------|-----------|---------------------|-------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | S12-CRGPR-16-3 | S12-CRGPL-16-3 | RPGN-32 | 1.250 | 1.000 | 12.000 | 0.640 | - | - | CL-7 | XNS-36 | TK-00667 | | S17-CRGPR-24-3 | S17-CRGPL-24-3 | RPGN-32 | 1.718 | 1.500 | 13.750 | 0.890 | SP-34 | #2-56x 1/4 S.H.C.S. | CL-7 | XNS-36 | TK-00502 | | S22-CRGPR-32-3 | S22-CRGPL-32-3 | RPGN-32 | 2.218 | 2.000 | 16.000 | 1.140 | SP-34 | #2-56x 1/4 S.H.C.S. | CL-7 | XNS-36 | TK-00502 | | S25-CRGPR-32-4 | S25-CRGPL-32-4 | RPGN-43 | 2.468 | 2.000 | 16.000 | 1.281 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | | S30-CRGPR-40-4 | S30-CRGPL-40-4 | RPGN-43 | 2.968 | 2.500 | 16.000 | 1.531 | SP-44 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00503 | st Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. [†] Specifiy left or right chipbreaker when ordering. (example: 307377-R for right) ## S-CSKPR/L Style K / Square / Positive Rake / 15° Lead | Part N | umber | Gage | | Dime | nsions (inch | ies) | | Standard Compo | nents | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|-----------|---------------------|-------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | S12-CSKPR-16-4 | S12-CSKPL-16-4 | SPGN-432 | 1.250 | 1.000 | 12.000 | 0.640 | - | _ | CL-7 | XNS-36 | TK-00667 | | S17-CSKPR-24-4 | S17-CSKPL-24-4 | SPGN-432 | 1.718 | 1.500 | 13.750 | 0.890 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | S22-CSKPR-32-4 | S22-CSKPL-32-4 | SPGN-432 | 2.218 | 2.000 | 16.000 | 1.140 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | S27-CSKPR-40-4 | S27-CSKPL-40-4 | SPGN-432 | 2.718 | 2.500 | 16.000 | 1.390 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## S-CSSPR/L Style S / Square / Positive Rake / 45° Lead | Part N | umber | Gage | | Dime | nsions (inch | es) | | Standard Compo | nents | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|-----------|---------------------|-------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | S12-CSSPR-16-4 | S12-CSSPL-16-4 | SPGN-432 | 1.250 | 1.000 | 12.000 | 0.640 | - | _ | CL-7 | XNS-36 | TK-00667 | | S17-CSSPR-24-4 | S17-CSSPL-24-4 | SPGN-432 | 1.718 | 1.500 | 13.750 | 0.890 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-58 | TK-03027 | | S22-CSSPR-32-4 | S22-CSSPL-32-4 | SPGN-432 | 2.218 | 2.000 | 16.000 | 1.140 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | | S27-CSSPR-40-4 | S27-CSSPL-40-4 | SPGN-432 | 2.718 | 2.500 | 16.000 | 1.390 | SP-41 | #4-40x 3/8 F.H.C.S. | CL-12 | XNS-59 | TK-00504 | $[\]label{thm:continuity} \textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ ## S-CTFPR/L | Part N | umber | Gage | | Dime | nsions (inch | ies) | | Standard Compo | nents | | | |----------------|----------------|----------|-----------------|-------|--------------|-------|-----------|---------------------|-------|-------------|-----------------| | Right Hand | Left Hand | Inserts | Minimum
Bore | A | C | F | Shim Seat | Seat Screw | Clamp | Clamp Screw | *Tune-Up
Kit | | S12-CTFPR-16-3 | S12-CTFPL-16-3 | TPGN-322 | 1.250 | 1.000 | 12.000 | 0.640 | - | _ | CL-7 | XNS-35 | TK-00668 | | S17-CTFPR-24-3 | S17-CTFPL-24-3 | TPGN-322 | 1.718 | 1.500 | 13.750 | 0.890 | SP3A | #4-40x 3/8 F.H.C.S. | CL-7 | XNS-36 | TK-00507 | | S20-CTFPR-24-4 | S20-CTFPL-24-4 | TPGN-432 | 1.968 | 1.500 | 13.750 | 1.031 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | S25-CTFPR-32-4 | S25-CTFPL-32-4 | TPGN-432 | 2.468 | 2.000 | 16.000 | 1.281 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | | S30-CTFPR-40-4 | S30-CTFPL-40-4 | TPGN-432 | 2.968 | 2.500 | 16.000 | 1.531 | SP-4 | #6-32x 1/2 F.H.C.S. | CL-12 | XNS-59 | TK-00508 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## S-STFNR/L Style F / Triangle / Positive Rake / 0° Lead | Part N | umber | Gage | | | Dimensions (inches) | | Standard Components | | |----------------------|--------------|---------|-----------------|-------|---------------------|-------|---------------------|-----------------| | Right Hand Left Hand | | Inserts | Minimum
Bore | А | С | F | Insert Screw | *Tune-Up
Kit | | | | | | | | | | | | S-STFNR-6-2 | S-STFNL-6-2 | TP-41 | 0.500 | 0.375 | 6.000 | 0.250 | #4-40x1/4BHCS | TK-00922 | | S-STFNR-8-2 | S-STFNL-8-2 | TP-41 | 0.625 | 0.500 | 8.000 | 0.312 | #4-40x1/4BHCS | TK-00922 | | S-STFNR-10-2 | S-STFNL-10-2 | TP-41 | 0.750 | 0.625 | 10.000 | 0.375 | #4-40x1/4BHCS | TK-00922 | | S-STFNR-12-3 | S-STFNL-12-3 | TPGA322 | 1.000 | 0.750 | 10.000 | 0.500 | #6-32x3/8BHCS | TK-00923 | $^{{\}color{blue}*} \quad \textbf{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder.}$ ## **Heavy Turning** The manufacture of rolls for use in steel making is an area where machinability has been decreased significantly by the introduction of alloyed materials, especially chromium content. In addition, the use of forged rolls is increasing, and centrifugally cast products with high hardness levels and surface contamination are another challenge. Ceramic cutting tools such as Greenleaf GEM-8™ composite material and WG-300® whiskered material are finding an important place in heavy turning when combined with rigid, well-designed holding systems. Greenleaf has extensive experience in the design and manufacture of heavy-turning tooling systems. For more than thirty years, we have supplied O.E.M. packages to many of the largest lathe manufacturers — both domestic and overseas. We will be pleased to quote tooling systems for any type of machine to effectively use ceramic or carbide inserts. Most of the options regularly manufactured are outlined on page HT 28. Call a Greenleaf heavy-turning specialist at 800-458-1850 to discuss your particular needs. ## Insert Grades ### **Carbide** Greenleaf offers a comprehensive line of carbide inserts ranging from sub-micron C-1 through C-8 classifications. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. #### **CVD Coated** #### **GA5023** A high-performance grade designed for the turning and milling of various grades of cast iron, GA5023 features an advanced MT-CVD coating specifically developed to withstand the abrasiveness of cast iron in machining. Applications range from roughing to finishing in most grades of cast iron, including gray, nodular, and others. The high wear resistance and toughness of GA5023 enable high-speed machining in a wide range of feed rates. #### GA5035 A high-performance MT-CVD coated grade for turning all types of steels, GA5035 can be used for heavy roughing to finish-turning applications requiring resistance to heat deformation, thermal shock from interrupted cuts, and abrasion, GA5035 should be applied at high speeds and a moderate range of feeds. GA5035 is the primary choice for steel turning. #### **GA5036** A high-speed MT-CVD coated milling grade, GA5036 should be used when milling forged and cast steels and select ductile irons. GA5036 constitutes a unique combination of toughness and heat resistance, making it suitable for heavy and light-duty milling at high cutting speeds. It is a great first choice for all steel milling. #### GA5125 A high-performance MT-CVD coated carbide used primarily for the milling and turning of manganese steel. GA5125 can also be applied in Cr-Mo steels, tool steels, and other alloyed steels in continuous and interrupted turning. GA5125 provides excellent resistance to abrasion, crater wear, thermal shock, deformation, and built-up edge. It performs best when applied at high speeds and moderate feed rates. #### **PVD Coated** #### G-915 A multi-layer PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels, and low-carbon steels. The coating adds heat and abrasion resistance to the tough substrate. G-915 should be used at moderate speeds and moderate to high feeds. It is a versatile grade that performs well in a variety of materials and operations outside its primary application range, making it a great choice for general
machining. #### G-935 A multi-layer PVD-coated grade for steel milling and turning applications requiring additional resistance to mechanical and thermal shock. The multi-layered PVD coating raises the speed envelope and wear resistance in tough milling, indexable drilling, and interrupted turning applications. #### Uncoated #### G-02 An excellent general-purpose cast-iron grade, G-02 can be used for milling and turning cast iron at moderately high speeds and medium feeds. G-02 is also a good choice for machining aluminum with positive rakes and light roughing of some heat-resistant alloys and stainless steels. #### **G-20M** A sub-micron C-2 carbide grade suited for use in light-to-medium turning of titanium and heat-resistant super alloys, G-20M has the strength and edge wear characteristics to resist notching when turning highstrength materials. #### G-50 A grade used for the heavy roughing of steel and steel castings in unstable conditions, and ferritic stainless steels in most applications, G-50 is tough enough to enable the use of positive rakes in turning. #### G-60 Used for the heavy rough turning of steel, steel castings, and steel forgings. Apply G-60 at moderate speeds and heavy feed rates and depths of cut. G-60 is more wearresistant than G-50 but is lower in toughness. #### G-74 A roughing and finishing grade for steel and steel castings, G-74 should be applied at high speeds and moderate to heavy feeds. It is well-suited for the turning of steel rolls. #### Ceramic Greenleaf is the industry leader in the development and manufacture of ceramic and coated ceramic inserts in ANSI standard and special geometries. Some of the most prominent include: #### WG-300® A SiC whisker-reinforced Al_2O_3 ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300° the first choice worldwide for grooving and turning difficult materials. #### WG-600® A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600° include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as milling of hardened steels and select stainless steels. WG-600° is particularly well-suited for finish-turning and grooving of heat-resistant super alloys and is unmatched in both turning and milling of steels with a hardness above 60 HRc. #### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted cuts, forging scale removal, and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### **GSN100™** An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. #### GEM-8™ An Al₂O₃ + TiC composite ceramic exhibiting excellent hardness and strength at elevated temperatures. GEM-8™ offers a high degree of predictability in roll turning and continuous cuts in ferrous alloys. ## **Edge Preparations** PRIMARY ANGLE | | | DV 4 | MELE | | |-----|--------------|-------|------|--| | SEC | UND <i>F</i> | NKY A | NGLE | | | Edge
Prep | Hone | Primary
Land | Primary
Angle | Secondary
Land | Secondary
Angle | Application | |--------------|--------------|-----------------|------------------|-------------------|--------------------|---| | T2A | .0005001" R. | .006008" | 20° | | | Scale applications, light interruptions, weld overlays, finish turning and milling of hardened materials. | | T4A | .0005001" R. | .065075" | 10° | .006008" | 25° | Heavy machining <3/4"IC - Roll turning, 3V, 4V, CDH-22, CDH-33. | | T4B | .001002" R. | .065075″ | 10° | .006008" | 25° | Heavy machining <3/4"IC - Roll turning, 3V, 4V,
CDH-22, CDH-33. | | T10B | .001002" R. | .090100" | 15° | .006008" | 30° | Heavy machining, iron and steel roll turning >3/4"IC,
CDH-43, CDH-53. | NOTE: For additional edge preparations see page ATI 22-23. ## **Chipform Application Range** ## **Pictorial Index** #### **Carbide Inserts – Negative** 80° Diamond Chip Control GP2, MR, HR — single sided page: HT 10 Square Flat Top page: HT 13 **Carbide Inserts — Negative** continued SNMA-IR Insert and Toolholder page: HT 18 **Radius Forming** Ceramic Inserts – Negative 80° Diamond Flat Top page: HT 10 Square Flat Top page: HT 14 80° Diamond page: HT 19 80° Diamond Flat Top page: HT 11 Triangle Chip Control MR page: HT 15 Round page: HT 19 Round Chip Control MR, HR — single sided page: HT 12 Triangle Flat Top page: HT 15 Square page: HT 20 Round Flat Top page: HT 12 Triangle Flat Top TNGN, TNUN page: HT 16 Triangle page: HT 20 Round Flat Top page: HT 12 Square Chip Control GP2, MR, HR – single sided page: HT 13 #### **Carbide Inserts – Positive** Triangle Flat Top page: HT 17 Square Flat Top page: HT 17 #### **Ceramic Inserts – Positive** Square page: HT 21 ### **Roll Turning** ### **Heavy Turning Toolholder** Roll Turning page: HT 22 H–SROON Style K Neutral Carbide & Ceramic Inserts page: HT 27 Roll Turning page: HT 22 Roll Turning page: HT 23 Roll Turning page: HT 24 Round V-Bottom page: HT 25 Round V-Bottom page: HT 25 Square Negative page: HT 26 ## 80° Diamond Inserts Chip Control — CNMG, CNMM | | | | | Steel | | Stair
St | eel | | He
Resis
Super | | | | Dime | nsions (in | ches) | | |-----------------|--------------------|-------------|----------|--------|--------|-------------|----------|--------|----------------------|-------|----------------|-------|-------|------------|-------|-------| | Sha | pe: 80° Diamond | Part Number | | Р | | | И | K | S | | Part Number | | | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | ISO | A | L | Т | D | R | | | | CNMG-643-GP | A | • | • | • | A | • | A | | CNMG-190612-GP | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | General Purpose | CNMG-642-MR | A | • | • | • | A | • | A | | CNMG-190608-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.031 | | hing | In the Late of the | CNMG-643-MR | A | • | • | • | A | • | A | | CNMG-190612-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | bno | E COL | CNMG-644-MR | | | | | | | | | CNMG-190616-MR | 0.750 | 0.761 | 0.250 | 0.312 | 0.062 | | Medium Roughing | CNMG-643-HR | | • | • | • | A | • | | | CNMM-190612-HR | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | Heavy Roughing | | | | | | | | | | | | | | | | | Flat Top — CNMA CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened | Shape: 80° Diamond | Part Number | | Steel
P | | Stair
Ste | | Cast
Iron
K | Resi | at-
stant
Alloys | Part Number | | Dime | ensions (in | ches) | | |--------------------|-------------|--------|------------|--------|--------------|-------|-------------------|-------|------------------------|-------------|-------|-------|-------------|-------|-------| | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | 6-915 | G-20M | ISO | A | L | т | D | R | | | CNMA-642 | • | • | | | • | • | • | • | CNMA-190608 | 0.750 | 0.761 | 0.250 | 0.312 | 0.031 | | | CNMA-643 | • | • | | | • | • | • | • | CNMA-190612 | 0.750 | 0.761 | 0.250 | 0.312 | 0.047 | | | CNMA-644 | • | • | | | • | • | • | • | CNMA-190616 | 0.750 | 0.761 | 0.250 | 0.312 | 0.062 | | | CNMA-866 | • | • | | | • | • | • | • | CNMA-250924 | 1.000 | 1.015 | 0.375 | 0.359 | 0.093 | | | | | | | | | | | | | | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated **Grade descriptions** — pages HT 4–5 CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened ## 80° Diamond Inserts Flat Top — CNGN | | Shape: 80° Diamond | ANSI | | Steel
P | | Stair
Ste | | Cast
Iron
K | Resi | eat-
stant
Alloys | Part Number | | Dimensio | ns (inches |) | |--|--------------------|----------|--------|------------|--------|--------------|-------|-------------------|-------|-------------------------|-------------|-------|----------|------------|-------| | | · | | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | ISO | A | L | т | R | | | | CNGN-632 | • | • | | | • | • | • | • | CNGN-190408 | 0.750 | 0.761 | 0.187 | 0.031 | | | | CNGN-633 | • | • | | | • | • | • | • | CNGN-190412 | 0.750 | 0.761 | 0.187 | 0.047 | | | | CNGN-634 | • | • | | | • | • | • | • | CNGN-190416 | 0.750 | 0.761 | 0.187 | 0.062 | | | | CNGN-643 | • | | | | • | • | | • | CNGN-190612 | 0.750 | 0.761 | 0.250 | 0.047 | | | | CNGN-644 | • | • | | | • | • | • | • | CNGN-190616 | 0.750 | 0.761 | 0.250 | 0.062 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened First Choice lacktriangle Second Choice lacktriangle Alternative lacktriangle Interrupted/Milling lacktriangle **Grade descriptions** — pages HT 4–5 HT ## **Round Inserts** Chip Control — RNMG, RNMM | | | | | Steel | | Stain
Ste | eel | | Super | at-
stant
Alloys | | Dime | ensions (ir | nches) | |-----------------|------------------------------------|---------------------|--------|-----------|--------|--------------
--------|-----------|------------|------------------------|-----------------------------------|-------|-------------|--------| | S | hape: Round | Part Number
ANSI | GA5035 | GA5125 ~ | GA5036 | GA5023 | G-915 | GA5023 ~ | G-915 | G-20M | Part Number
ISO | A | Т | D | | _ | | RNMG-64-MR | | • | | | • | • | • | • | RNMG-190600-MR | 0.750 | 0.250 | 0.312 | | Fi. | | RNMG-86-MR | • | • | | | • | • | • | • | RNMG-250900-MR | 1.000 | 0.375 | 0.359 | | Medium Roughing | | | | | | | | | | | | | | | | | | RNMM-84-HR | • | • | | | • | • | • | • | RNMM-250600-MR | 1.000 | 0.250 | 0.359 | | Heavy Roughing | | | | | | | | | | | | | | | | CARRID | COATINGS: MT-CVD Coated PVD Coated | Uncoated First Cho | nice 🌢 | Second Cl | noice | Alternat | tive 🛦 | Interrunt | ed/Milling | ٠ | Grade descriptions — pages HT 4–5 | | | | ## Flat Top — RNMA CERAMIC CLASSIFICATION: Whisker Cer Grade descriptions — pages HT 4–5 ### Flat Top — RNGN | | | | Steel | | Stair
Ste | eel | | Resi | eat-
istant
r Alloys | | | ensions | |--------------|-------------|--------|--------|--------|--------------|-------|--------|-------|----------------------------|-------------|-------|---------| | Shape: Round | Part Number | | r | | | И | K | | 3 | Part Number | (inc | ches) | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | ISO | A | т | | | RNGN-63 | • | • | | | • | • | • | • | RNGN-190400 | 0.750 | 0.187 | | | RNGN-84 | • | • | | | • | • | • | • | RNGN-250600 | 1.000 | 0.250 | | | | | | | | | | | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Un CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened **Grade descriptions** — pages HT 4–5 # **Square Inserts**Chip Control — SNMG, SNMM | | | | | Steel | | | nless
eel | Cast
Iron | He
Resis
Super | tant | | | Dime | ensions (in | ches) | | |--------------------|----------------------------------|--------------|----------|----------|--------|------------|--------------|--------------|----------------------|-----------|----------------------------------|-------|-------|-------------|-------|-------| | Sha | ape: Square | Part Number | | P | | ı | И | K | S | | Part Number | | | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | 6-915 | G-20M | ISO | A | L | Т | D | R | | | | SNMG-643-GP2 | A | • | | | • | • | • | • | SNMG-190612-GP2 | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | - s | Summer ! | SNMG-644-GP2 | A | • | | | • | • | • | • | SNMG-190616-GP2 | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | General
Purpose | in territoria | | | | | | | | | | | | | | | | | | | SNMG-643-MR | A | • | | | • | • | • | • | SNMG-190612-MR | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | ng n | | SNMG-644-MR | A | • | | | • | • | • | • | SNMG-190616-MR | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | Medium
Roughing | | SNMG-866-MR | A | • | | | • | • | • | • | SNMG-250924-MR | 1.000 | 1.000 | 0.375 | 0.359 | 0.093 | | ŠŠ | SNMM-643-HR | A | • | | | • | • | • | • | SNMM-190612-HR | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | _ gu | | SNMM-644-HR | A | • | | | • | • | • | • | SNMM-190616-HR | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | Heavy
Roughing | ATINGS: MT-CVD Coated PVD Coated | Uncated | | t Choice | | and Choice | | ernative | | rrupted/M | illing ❖ Grade descriptions — pa | | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened ## Flat Top — SNMA | | | | Steel | | Ste | nless
eel | Cast
Iron
K | Resis | at-
stant
Alloys | | | Dime | ensions (in | ches) | | |---------------|---------------------|----------|--------|--------|--------|--------------|-------------------|-------|------------------------|--------------------|-------|-------|-------------|-------|-------| | Shape: Square | Part Number
ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | Part Number
ISO | A | L | T | D | R | | | SNMA-643 | A | • | | | • | • | • | • | SNMA-190612 | 0.750 | 0.750 | 0.250 | 0.312 | 0.047 | | | SNMA-644 | | • | | | • | • | • | • | SNMA-190616 | 0.750 | 0.750 | 0.250 | 0.312 | 0.062 | | | SNMA-864 | A | • | | | • | • | • | • | SNMA-250916 | 1.000 | 1.000 | 0.375 | 0.359 | 0.062 | | | SNMA-866 | A | • | | | • | • | • | • | SNMA-250924 | 1.000 | 1.000 | 0.375 | 0.359 | 0.093 | | | | | | | | | | | | | | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated # **Square Inserts**Flat Top — SNGN / SNUN | | | | Steel | | Staiı
Sta | | Cast
Iron | He
Resi:
Super | tant | | | Dimensio | ns (inches |) | |---------------|-------------|----------|--------|--------|--------------|-------|--------------|----------------------|-------|-------------|-------|----------|------------|-------| | Shape: Square | Part Number | | P | | I | И | K | 2 | | Part Number | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | ISO | A | L | т | R | | | SNGN-633 | | • | | | • | • | • | • | SNGN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SNGN-634 | | • | | | • | • | • | • | SNGN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SNGN-638 | A | • | | | • | • | • | • | SNGN-190432 | 0.750 | 0.750 | 0.187 | 0.125 | | | SNGN-643 | | • | | | • | • | • | • | SNGN-190612 | 0.750 | 0.750 | 0.250 | 0.047 | | | SNGN-644 | A | • | | | • | • | • | • | SNGN-190616 | 0.750 | 0.750 | 0.250 | 0.062 | | | SNGN-646 | | • | | | • | • | • | • | SNGN-190624 | 0.750 | 0.750 | 0.250 | 0.093 | | | SNGN-844 | | • | | | • | • | • | • | SNGN-250616 | 1.000 | 1.000 | 0.250 | 0.062 | | | SNGN-854 | | • | | | • | • | • | • | SNGN-250716 | 1.000 | 1.000 | 0.312 | 0.062 | | | SNGN-10412 | | • | | | • | • | • | • | SNGN-310648 | 1.250 | 1.250 | 0.250 | 0.187 | | | SNGN-1066 | | • | | | • | • | • | • | SNGN-310924 | 1.250 | 1.250 | 0.375 | 0.093 | | | SNGN-1068 | A | • | | | • | • | • | • | SNGN-310932 | 1.250 | 1.250 | 0.375 | 0.125 | | | SNGN-1288 | | • | | | • | • | • | • | SNGN-381232 | 1.500 | 1.500 | 0.500 | 0.125 | | | SNUN-633 | | • | | | • | • | • | • | SNUN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SNUN-634 | | • | | | • | • | • | • | SNUN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SNUN-844 | | • | | | • | • | • | • | SNUN-250616 | 1.000 | 1.000 | 0.250 | 0.062 | | | SNUN-848 | A | • | | | • | • | • | • | SNUN-250632 | 1.000 | 1.000 | 0.250 | 0.125 | | | SNUN-854 | A | • | | | • | • | • | • | SNUN-250716 | 1.000 | 1.000 | 0.312 | 0.062 | | | SNUN-1066 | A | • | | | • | • | • | • | SNUN-310924 | 1.250 | 1.250 | 0.375 | 0.093 | | | SNUN-1068 | A | • | | | • | • | • | • | SNUN-310932 | 1.250 | 1.250 | 0.375 | 0.125 | | | SNUN-1288 | | • | | | • | • | • | • | SNUN-381232 | 1.500 | 1.500 | 0.500 | 0.125 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated **Grade descriptions** — pages HT 4–5 # **Triangle Inserts**Chip Control — TNMG | | | | | Steel | | Stair
Ste | | Cast
Iron | Resi | at-
stant
Alloys | | | Dime | ensions (in | ches) | | | |-----------------|---|--------------------------------------|----------|------------|--------|--------------|-----------------------|--------------|-------|------------------------|-----------------------------------|-----------|-------|-------------|-------|-------|--| | Sha | pe: Triangle | Part Number | | P | | ٨ | Λ | K | | 5 | Part Number | | | | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | 6-915 | GA5023 | 6-915 | G-20M | ISO | A | L | Т | D | R | | | | | TNMG-666-MR | A | • | | | • | • | • | • | TNMG-330924-MR | 0.750 | 1.299 | 0.375 | 0.312 | 0.094 | | | Medium Roughing | ATINGS: MT-CVD Coated PVD Coated ASSIFICATION: Whisker Ceramic Phase | Uncoated Silicon Nitride Alumina TiC | Firs | t Choice ◀ | Seco | nd Choice | Alt | ernative A | ▲ Int | errupted/M | illing 🌣 Grade descriptions — pag | es HT 4–5 | | | | | | ## Flat Top — TNMA | | | | Steel | | Stair
Ste | el | Cast | Resi | eat-
stant
r Alloys | | | Dime | nsions (in | ches) | | |-----------------|---------------------|----------|----------|--------|--------------|----------|----------|-------|---------------------------|--------------------|-------|-------|------------|-------|-------| | Shape: Triangle | Part Number
ANSI | GA5035 | GA5125 ~ | GA5036 | GA5023 | 6-915 | GA5023 | G-915 | G-20M | Part Number
ISO | A | L | Т | D | R | | | TNMA-642 | A | • | | | • | • | • | • | TNMA-330608 | 0.750 | 1.299 | 0.250 | 0.312 | 0.031 | | | TNMA-643 | A | • | | | • | • | • | • | TNMA-330612 | 0.750 | 1.299 | 0.250 | 0.312 | 0.047 | | | TNMA-644 | A | • | | | • | • | • | • | TNMA-330616 | 0.750 | 1.299 | 0.250 | 0.312 | 0.062 | | | TNMA-664 | A | • | | | • | • | • | • | TNMA-330916 | 0.750 | 1.299 | 0.375 | 0.312 | 0.062 | | | TNMA-666 | A | • | | | • | • | • | • | TNMA-330924 | 0.750 | 1.299 | 0.375 | 0.312 | 0.093 | | | TNMA-668 | | • | | | * | * | • | • | TNMA-330932 | 0.750 | 1.299 | 0.375 | 0.312 | 0.125 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Grade descriptions — pages HT 4-5 # **Triangle Inserts**Flat Top — TNGN | | | | Steel | | Stain
Ste | | Cast
Iron | He
Resis
Super | tant | | | Dimensio | ns (inches |) | |-----------------|-------------|--------|--------|--------|--------------|-------|--------------|----------------------|----------|-------------|-------|----------|------------|-------| | Shape: Triangle | Part Number | | P | | ٨ | Λ | K | 9 | | Part Number | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | 6-915 | GA5023 | G-915 | G-20M | ISO | A | L | T | R | | | TNGN-654 | • | • | | | • | • | • | • | TNGN-330716 | 0.750 | 1.299 | 0.312 | 0.062 | | | TNGN-656 | • | • | | | • | • | • | • | TNGN-330724 | 0.750 | 1.299 | 0.312 | 0.093 | | |
TNGN-664 | • | • | | | • | • | • | • | TNGN-330916 | 0.750 | 1.299 | 0.375 | 0.062 | | | TNGN-666 | • | • | | | • | • | • | • | TNGN-330924 | 0.750 | 1.299 | 0.375 | 0.093 | | | TNGN-668 | • | • | | | • | • | • | • | TNGN-330932 | 0.750 | 1.299 | 0.375 | 0.125 | | | TNGN-776 | • | • | | | • | • | • | * | TNGN-381124 | 0.875 | 1.516 | 0.437 | 0.093 | | | TNGN-778 | • | • | | | • | • | • | • | TNGN-381132 | 0.875 | 1.516 | 0.437 | 0.125 | | | TNGN-7710 | • | • | | | • | • | • | • | TNGN-381140 | 0.875 | 1.516 | 0.437 | 0.156 | | | TNGN-878 | • | • | | | • | • | • | • | TNGN-441132 | 1.000 | 1.732 | 0.437 | 0.125 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated First Choice ◆ Second Choice ● Alternative ▲ Interrupted/Milling ❖ Grade descriptions — pages HT 4–5 Flat Top — TNUN | | | | Steel | | Stain
Ste | | Cast
Iron | Hea
Resis
Super | tant | | | Dimensio | ns (inches |) | |--|-------------|--------|------------|--------|--------------|----------|--------------|-----------------------|------------|---|-------|----------|------------|-------| | Shape: Triangle | Part Number | | P | | ٨ | Λ | K | S | | Part Number | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | 6-915 | GA5023 | 6-915 | G-20M | ISO | A | L | T | R | | | TNUN-654 | • | • | | | • | • | • | • | TNUN-330716 | 0.750 | 1.299 | 0.312 | 0.062 | | | TNUN-656 | • | • | | | • | • | • | • | TNUN-330724 | 0.750 | 1.299 | 0.312 | 0.093 | | | TNUN-664 | • | • | | | • | • | • | • | TNUN-330916 | 0.750 | 1.299 | 0.375 | 0.062 | | | TNUN-666 | • | • | | | • | • | • | • | TNUN-330924 | 0.750 | 1.299 | 0.375 | 0.093 | | | TNUN-668 | • | • | | | • | • | • | • | TNUN-330932 | 0.750 | 1.299 | 0.375 | 0.125 | | | TNUN-776 | • | • | | | • | • | • | • | TNUN-381124 | 0.875 | 1.516 | 0.437 | 0.093 | | | TNUN-778 | • | • | | | • | • | • | • | TNUN-381132 | 0.875 | 1.516 | 0.437 | 0.125 | | | TNUN-7710 | • | • | | | ♦ | • | • | • | TNUN-381140 | 0.875 | 1.516 | 0.437 | 0.156 | | | TNUN-878 | • | • | | | • | • | • | • | TNUN-441132 | 1.000 | 1.732 | 0.437 | 0.125 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated | Unroated | Fire | t Choice ◀ | Seco | nd Choice | ΔΙτ | ernative . | ▲ Inte | rrupted/Mi | lling • Grade descriptions — pages HT 4—5 | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened # **Triangle Inserts**Flat Top — TPGN/TPUN | | | Steel | | | | Cast
Iron | Hea
Resis
Super | at-
tant
Alloys | | | Dimensio | ns (inches |) | |-------------|-------------------|--------|--|--------|--|---------------------|---|---|--|--|---|---|---| | Part Number | | P | | ٨ | Λ | K | S | | Part Number | | | • | • | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | 6-915 | GA5023 | 6-915 | G-20M | ISO | A | L | т | R | | TPGN-666 | • | • | | | • | • | • | • | TPGN-330924 | 0.750 | 1.299 | 0.375 | 0.093 | | | | | | | | | | | | | | | | | TPUN-664 | • | • | | | • | • | • | • | TPUN-330916 | 0.750 | 1.299 | 0.375 | 0.062 | | TPUN-666 | • | • | | | • | • | • | • | TPUN-330924 | 0.750 | 1.299 | 0.375 | 0.093 | | | TPGN-666 TPUN-664 | ANSI | Part Number ANSI 500 500 500 500 500 500 500 500 500 50 | ANSI | Part Number ANSI TPUN-664 TPUN-664 TPUN-664 TPUN-664 | Part Number ANSI P | Part Number ANSI TPUN-664 | Part Number ANSI P M K S STEEL Iron Super P M K S S1 S2 S2 S2 S2 S3 S4 S5 S5 S5 S5 S5 S5 S5 S5 S5 | Part Number ANSI TPUN-664 ANSI Steel Iron Super Alloys P | Part Number Part Number M K S Part Number ISO ANSI \$20 \$21 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$90 \$90 | Part Number ANSI Part Number ISO Part Number ISO Part Number ISO A TPGN-666 ◆ ◆ ◆ ◆ ◆ ◆ ◆ TPGN-330924 0.750 | Part Number ANSI Part Number ISO Part Number ISO Part Number ISO Part Number ISO A L TPGN-666 ◆ ● ◆ ◆ ◆ ◆ ◆ TPGN-330924 0.750 1.299 | Part Number ANSI Part Number ISO Part Number ISO A L T TPGN-666 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ • TPUN-330916 0.750 1.299 0.375 | ## **Square Inserts**Flat Top — SPGN / SPUN CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened | | | | Steel | | Stair
Ste | el | Cast
Iron | Resi
Super | at-
stant
Alloys | | | Dimensio | ns (inches | .) | |---|-------------|--------|-----------|--------|--------------|-------|--------------|---------------|------------------------|--|-------|----------|------------|-------| | Shape: Square | Part Number | | P | | 1 | И | K | ! | | Part Number | | | | | | | ANSI | GA5035 | GA5125 | GA5036 | GA5023 | G-915 | GA5023 | G-915 | G-20M | 150 | A | L | Т | R | | | SPGN-633 | • | • | | | • | • | • | • | SPGN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPGN-634 | • | • | | | • | • | • | • | SPGN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPGN-636 | • | • | | | • | • | • | • | SPGN-190424 | 0.750 | 0.750 | 0.187 | 0.093 | | | SPGN-638 | • | • | | | • | • | • | • | SPGN-190432 | 0.750 | 0.750 | 0.187 | 0.125 | | | | | | | | | | | | | | | | | | | SPUN-633 | • | • | | | • | • | • | • | SPUN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPUN-634 | • | • | | | • | • | • | • | SPUN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPUN-643 | • | • | | | • | • | • | • | SPUN-190612 | 0.750 | 0.750 | 0.250 | 0.047 | | | SPUN-644 | • | • | | | • | • | • | • | SPUN-190616 | 0.750 | 0.750 | 0.250 | 0.062 | | | SPUN-864 | • | • | | | • | • | • | • | SPUN-250916 | 1.000 | 1.000 | 0.375 | 0.062 | | | SPUN-866 | • | • | | | • | • | • | • | SPUN-250924 | 1.000 | 1.000 | 0.375 | 0.093 | | | SPUN-868 | • | • | | | • | • | • | • | SPUN-250932 | 1.000 | 1.000 | 0.375 | 0.125 | | | SPUN-1068 | • | • | | | • | • | • | • | SPUN-310932 | 1.250 | 1.250 | 0.375 | 0.125 | | | SPUN-1288 | • | • | | | • | • | • | • | SPUN-381232 | 1.500 | 1.500 | 0.500 | 0.125 | | CARBIDE COATINGS: MT-CVD Coated PVD Coate | d Uncoated | Firs | st Choice | Seco | nd Choice | • Al | ternative . | ▲ Int | rrupted/M | illing � Grade descriptions — pages HT 4–5 | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened ## **Radius Forming Inserts** SNMA | Shape: Square | Part Number | | | | | Part Number | D | imensio | ns (inche | s) | |---------------|--------------|--------|--------|------|------|--------------|-------|---------|-----------|-------| | Shapersquare | ANSI | GA5035 | GA5036 | 6-02 | 09-5 | ISO | A | D | Т | R | | | SNMA-64IR4 | • | • | | | SNMA-64IR4 | 0.750 | 0.250 | 0.312 | 0.062 | | | SNMA-64IR6 | • | • | | | SNMA-64IR6 | 0.750 | 0.250 | 0.312 | 0.093 | | | SNMA-64IR8 | • | • | | | SNMA-64IR8 | 0.750 | 0.250 | 0.312 | 0.125 | | | SNMA-64IR10 | • | • | | | SNMA-64IR10 | 0.750 | 0.250 | 0.312 | 0.156 | | | SNMA-84IR12 | • | • | | | SNMA-84IR12 | 1.000 | 0.250 | 0.359 | 0.187 | | | SNMA-84IR14 | • | • | | | SNMA-84IR14 | 1.000 | 0.250 | 0.359 | 0.218 | | | SNMA-84IR16 | • | • | | | SNMA-84IR16 | 1.000 | 0.250 | 0.359 | 0.250 | | | SNMA-106IR20 | • | • | | | SNMA-106IR20 | 1.250 | 0.375 | 0.500 | 0.312 | | | SNMA-106IR24 | • | • | | | SNMA-106IR24 | 1.250 | 0.375 | 0.500 | 0.375 | | | SNMA-126IR28 | • | • | | | SNMA-126IR28 | 1.500 | 0.375 | 0.500 | 0.437 | | | SNMA-126IR32 | • | • | | | SNMA-126IR32 | 1.500 | 0.375 | 0.500 | 0.500 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Unit CERAMIC CLASSIFICATION: Whisker Ceramic Phase-To ## Style GSRN Neutral toolhoder shown | Part Number | Dimei | nsions (ir | nches) | | Stand | ard Components | | Tune-Up Kit | Insert Options | | |-------------|-------|------------|--------|------|------------|----------------|-------------|-------------|----------------|-------| | Neutral | A | В | С | Shim | Center Pin | Clamp | Clamp Screw | | Insert | R | | GSRN-646 | 0.750 | 1.000 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR4 | 0.062 | | GSRN-656 | 0.750 | 1.250 | 6.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR6 | 0.093 | | GSRN-666 | 0.750 | 1.500 | 7.000 | SR6 | 30309 | 30308-2 | 30301-1 | TK-01117 | SNMA-64IR8 | 0.125 | | d2kN-000 | 0.750 | 1.500 | 7.000 | 3110 | 30309 | 30300-2 | 30301-1 | 114-01117 | SNMA-64IR10 | 0.156 | | GSRN-168 | 1.000 | 1.000 | 6.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR12 | 0.187 | | GSRN-858 | 1.000 | 1.250 | 7.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR14 | 0.218 | | GSRN-868 | 1.000 | 1.500 | 8.000 | SR8 | 30327-1 | 30308-2 | 30301-1 | TK-00572 | SNMA-84IR16 | 0.250 | | GSRN-2010 | 1.250 | 1.250 | 7.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR20 | 0.312 | | GSRN-2410 |
1.500 | 1.500 | 8.000 | SR10 | 30454 | 30319-2 | 30320 | TK-00573 | SNMA-106IR24 | 0.375 | | CCDN 2412 | 1 500 | 1 500 | 0.000 | CD12 | 20545 | 20210.2 | 20220 | TV 00574 | SNMA-126IR28 | 0.437 | | GSRN-2412 | 1.500 | 1.500 | 8.000 | SR12 | 30545 | 30319-2 | 30320 | TK-00574 | SNMA-126IR32 | 0.500 | These toolholders are Greenleaf standard and do not conform to the ANSI identification system. ## 80° Diamond Inserts CNGN | Shape: Diamond | Part Number | | Sto | eel | | S
Steel
M | | | ast
on
K | _ | | eat-Ro
Super | | | | St | lened
eel
H | | Part Number | | Dimensio | ns (inches |) | |----------------|-------------|----------|--------|----------|-------|-----------------|----------|--------|----------------|-------|--------|-----------------|----------|----------|------------------|--------|-------------------|-------|-------------|-------|----------|------------|-------| | - | ANSI | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | 009-5M | 009-5W | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | MG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | ISO | A | L | T | R | | | CNGN-642 | A | • | • | • | • | A | • | * | • | • | • | lack | * | \blacktriangle | • | * | • | CNGN-190608 | 0.750 | 0.761 | 0.250 | 0.031 | | | CNGN-643 | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | CNGN-190612 | 0.750 | 0.761 | 0.250 | 0.047 | | | CNGN-644 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | CNGN-190616 | 0.750 | 0.761 | 0.250 | 0.062 | ## **Round Inserts** RNGN | Shape: Round | Part Number | | Ste | eel | | S
Steel | | li | ast
on
K | | | | esista
Alloy | | | St | lened
eel | | Part Number | | nsions
:hes) | |--------------|-------------|----------|--------|----------|-------|------------|----------|--------|----------------|-------|--------|----------|-----------------|----------|----------|--------|--------------|-------|-------------|-------|-----------------| | | ANSI | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | 009-5W | 009-5W | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | MG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | ISO | A | т | | | RNGN-64 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | RNGN-190600 | 0.750 | 0.250 | | | RNGN-65 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RNGN-190700 | 0.750 | 0.312 | | | RNGN-84 | A | • | • | • | • | | • | * | • | • | * | A | * | A | • | * | • | RNGN-250600 | 1.000 | 0.250 | | | RNGN-85 | A | • | • | • | • | | • | * | • | • | * | A | * | | • | * | • | RNGN-250700 | 1.000 | 0.312 | | | RNGN-86 | A | • | • | • | • | | • | * | • | • | * | | * | A | • | * | • | RNGN-250900 | 1.000 | 0.375 | | | RNGN-106 | A | • | • | • | • | | • | * | • | • | • | A | * | A | • | * | • | RNGN-310900 | 1.250 | 0.375 | ## Square Inserts SNGN | | | | Ste | | | S
Steel | | Ir | ast
on | | | | esista
Alloy | | | | eel | | | | Dimensio | ns (inches |) | |------|---------------------|----------|--------|----------|-------|------------|----------|--------|-----------|-------|--------|--------|-----------------|----------|----------------|--------|----------|-------|--------------------|-------|----------|------------|-------| | ANSI | Part Number
ANSI | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | MG-600 | 009-5W | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | 009-5W | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | Part Number
ISO | A | L | т | R | | | SNGN-642 | A | • | • | • | • | A | • | * | • | • | • | | * | | • | * | • | SNGN-190608 | 0.750 | 0.750 | 0.250 | 0.031 | | | SNGN-643 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | SNGN-190612 | 0.750 | 0.750 | 0.250 | 0.047 | | | SNGN-644 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | SNGN-190616 | 0.750 | 0.750 | 0.250 | 0.062 | | | SNGN-653 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | SNGN-190712 | 0.750 | 0.750 | 0.312 | 0.047 | | | SNGN-654 | A | • | • | • | • | A | • | * | • | • | • | A | * | \blacksquare | • | * | • | SNGN-190716 | 0.750 | 0.750 | 0.312 | 0.062 | | | SNGN-655 | A | • | • | • | • | | • | * | • | • | • | | * | A | • | * | • | SNGN-190720 | 0.750 | 0.750 | 0.312 | 0.078 | | | SNGN-866 | A | • | • | • | • | A | • | * | • | • | • | | * | A | • | * | • | SNGN-250924 | 1.000 | 1.000 | 0.375 | 0.094 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened **Grade descriptions** — pages HT 4–5 ## **Triangle Inserts**TNGN |
Part Number | | Ste | eel | | S
Steel
M | | lr | ast
on
K | | | eat-Ro
Super | | | | St | ened
eel | | Part Number | | Dimensio | ns (inches |) | |-----------------|--------|--------|----------|-------|-----------------|----------|--------|----------------|-------|--------|-----------------|--------|----------|----------|--------|-------------|-------|-------------|-------|----------|------------|-------| | ANSI | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | 009-5M | 009-5W | GSN100 | KSYTIN-1 | GEM-8 | WG-300 | 009-5W | MG-700 | 1-NILASX | WG-300 | 009-5M | NSYTIN-1 | GEM-8 | ISO | A | L | т | R | | TNGN-666 | | • | • | • | • | A | • | * | • | • | • | | * | A | • | * | • | TNGN-330924 | 0.750 | 1.299 | 0.375 | 0.094 | | TNGN-868 | | | • | • | • | | • | * | • | • | • | | * | | • | * | • | TNGN-440932 | 1.000 | 1.732 | 0.375 | 0.125 | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silico ## **Square Inserts** SPGN CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened | Shape: Square | Part Number | | Sto | eel | | S
Steel
M | | | ast
on
K | | | eat-R
Super | | | | | ened
eel | | Part Number | | Dimensio | ns (inches | ;) | |---------------|-------------|----------|--------|----------|-------|-----------------|----------|--------|----------------|-------|--------|----------------|----------|----------|----------|--------|-------------|-------|-------------|-------|----------|------------|-------| | | ANSI | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | 009-5M | 009-5W | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | 009-5M | WG-700 | XSYTIN-1 | WG-300 | 009-5M | 1-NILASX | GEM-8 | ISO | A | L | т | R | | | SPGN-633 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | SPGN-190412 | 0.750 | 0.750 | 0.187 | 0.047 | | | SPGN-634 | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | SPGN-190416 | 0.750 | 0.750 | 0.187 | 0.062 | | | SPGN-642 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | SPGN-190608 | 0.750 | 0.750 | 0.250 | 0.031 | ## **Roll Turning Inserts**Carbide — CDH | Shape: CDH | Part Number | | | | | Part Number | | Dime | ensions (in | ches) | | |------------|-------------|----------|----------|----------|----------|-------------|-------|-------|-------------|-------|-------| | | ANSI | GA5035 | GA5036 | G-02 | 09-5 | 150 | A | T | н | D | E | | | CDH-42 | | A | A | A | CDH-42 | 1.000 | 0.500 | 0.406 | 0.265 | 0.250 | | | CDH-43 | A | | | A | CDH-43 | 1.000 | 0.750 | 0.406 | 0.265 | 0.500 | | | CDH-51.5 | | A | A | A | CDH-51.5 | 1.250 | 0.375 | 0.593 | 0.390 | 0.375 | | | CDH-53 | | | A | A | CDH-53 | 1.250 | 0.750 | 0.593 | 0.390 | 0.375 | | | | | | | | | | | | | | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Sil First Choice lacktriangle Second Choice lacktriangle Alternative lacktriangle Interrupted/Milling lacktriangle Grade descriptions — pages HT 4–5 ### Ceramic — C-CDH | ANSI | Part Number | | Sto | eel | | S
Steel | | lr | ast
on
K | | | eat-R
Super | Alloy | | | St | ened
eel | | Part Number | Dime | ensions (in | iches) | |------|-------------|----------|--------|----------|-------|------------|----------|--------|----------------|-------|--------|----------------|----------|----------|----------|--------|-------------|-------|-------------|-------|-------------|--------| | | ANSI | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | 009-5W | 009-5W | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | 009-5W | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | A | т | D | | | C-CDH-21 | A | • | • | • | • | ▲ | • | * | • | • | • | ▲ | * | ▲ | • | * | • | C-CDH-21 | 0.500 | 0.250 | 0.125 | | | C-CDH-22 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | C-CDH-22 | 0.500 | 0.500 | 0.125 | | | C-CDH-31 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | C-CDH-31 | 0.750 | 0.250 | 0.265 | | | C-CDH-31.5 | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | C-CDH-31.5 | 0.750 | 0.375 | 0.265 | | | C-CDH-42 | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | C-CDH-42 | 1.000 | 0.500 | 0.265 | | | C-CDH-43 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | C-CDH-43 | 1.000 | 0.750 | 0.265 | | | C-CDH-51.5 | A | • | • | • | • | A | • | * | • | • | • | | * | A | • | * | • | C-CDH-51.5 | 1.250 | 0.375 | 0.390 | | | C-CDH-53 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | C-CDH-53 | 1.250 | 0.750 | 0.390 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened S First Choice ◆ Second Choice ● Alternative ▲ Interrupted/Milling ❖ **Grade descriptions** — pages HT 4–5 # Roll Turning Inserts LNUN | Shape: LNUN | Part Number | | | | | Part Number | | Dimensio | ns (inches |) | |--|-------------|----------|----------|----------|----------|-------------|-------|----------|------------|-------| |
J. J | ANSI | GA5035 | G-935 | 6-50 | 6-74 | ISO | w | L | т | R | | | LNUN-4442 | | | | | LNUN-4442 | 0.500 | 1.000 | 0.250 | 0.031 | | | LNUN-4444 | | | | | LNUN-4444 | 0.500 | 1.000 | 0.250 | 0.062 | | | LNUN-4452 | A | | | | LNUN-4452 | 0.500 | 1.000 | 0.312 | 0.031 | | | LNUN-4454 | | | | | LNUN-4454 | 0.500 | 1.000 | 0.312 | 0.062 | | | LNUN-5444 | | | | | LNUN-5444 | 0.625 | 1.000 | 0.250 | 0.062 | | | LNUN-5464 | | | | | LNUN-5464 | 0.625 | 1.000 | 0.375 | 0.062 | | | LNUN-5564 | | | | | LNUN-5564 | 0.625 | 1.250 | 0.375 | 0.062 | | | LNUN-6568 | A | | | A | LNUN-6568 | 0.750 | 1.250 | 0.375 | 0.125 | | | LNUN-6684 | A | | | A | LNUN-6684 | 0.750 | 1.500 | 0.500 | 0.062 | | | LNUN-6688 | A | A | | | LNUN-6688 | 0.750 | 1.500 | 0.500 | 0.125 | | | LNUN-66812 | A | | A | A | LNUN-66812 | 0.750 | 1.500 | 0.500 | 0.187 | | | LNUN-68812 | | | | | LNUN-68812 | 0.750 | 2.000 | 0.500 | 0.187 | First Choice lacktriangle Second Choice lacktriangle Alternative lacktriangle Interrupted/Milling lacktriangle CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC **Grade descriptions** — pages HT 4–5 # Roll Turning Inserts LNMN | Shape: LNMN | Part Number | | Ste | | | S
Steel | | Ir | ast
on
K | | | | esista
Alloy | | | | ened
eel | | Part Number | | Dimensio | ns (inches |) | |-------------|-------------|----------|--------|----------|-------|------------|----------|--------|----------------|-------|--------|--------|------------------|----------|----------|--------|-------------|-------|-------------|-------|----------|------------|-------| | · | ANSI | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | WG-600 | WG-600 | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | w | L | Т | R | | | LNMN-4442 | A | • | • | • | • | lack | • | * | • | • | • | lack | * | A | • | * | • | LNMN-4442 | 0.500 | 1.000 | 0.250 | 0.031 | | | LNMN-4444 | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | LNMN-4444 | 0.500 | 1.000 | 0.250 | 0.062 | | | LNMN-4452 | A | • | • | • | • | A | • | * | • | • | • | lack | * | | • | * | • | LNMN-4452 | 0.500 | 1.000 | 0.312 | 0.031 | | | LNMN-4454 | | • | • | • | • | 4 | • | * | • | • | • | | * | 4 | • | * | • | LNMN-4454 | 0.500 | 1.000 | 0.312 | 0.062 | | | LNMN-5444 | | • | • | • | • | A | • | * | • | • | • | \blacktriangle | * | | • | * | • | LNMN-5444 | 0.625 | 1.000 | 0.250 | 0.062 | | | LNMN-5464 | | • | • | • | • | | • | * | • | • | • | lack | * | | • | * | • | LNMN-5464 | 0.625 | 1.000 | 0.375 | 0.062 | | | LNMN-5564 | | • | • | • | • | | • | * | • | • | • | \blacktriangle | * | | • | * | • | LNMN-5564 | 0.625 | 1.250 | 0.375 | 0.062 | | | LNMN-6568 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | LNMN-6568 | 0.750 | 1.250 | 0.375 | 0.125 | | | LNMN-6684 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | LNMN-6684 | 0.750 | 1.500 | 0.500 | 0.062 | | | LNMN-6688 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | LNMN-6688 | 0.750 | 1.500 | 0.500 | 0.125 | | | LNMN-66812 | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | LNMN-66812 | 0.750 | 1.500 | 0.500 | 0.187 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated **Grade descriptions** — pages HT 4–5 ## **Round V-Bottom Inserts** RCGN-V | Shape: Round | Part Number | | Sto | eel | | S
Steel | | li | ast
on
K | | | eat-R
Super | | | | St | lened
eel | | Part Number | | nsions
:hes) | |-------------------------------------|-----------------|--------|--------|-----------|--------|------------|----------|--------|----------------|--------|--------|----------------|---------|----------|--------|---------|--------------|---------|-------------|-------|-----------------| | V-Bottom | ANSI | WG-300 | WG-600 | KSYTIN-1 | GEM-8 | 009-5W | WG-600 | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | ISO | A | T | | | RCGN-2V | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-060400 | 0.250 | 0.187 | | | RCGN-3V | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-090700 | 0.375 | 0.312 | | | RCGN-4V | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-120700 | 0.500 | 0.312 | | | RCGN-5V | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-151000 | 0.625 | 0.394 | | | RCGX-106 | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-191000 | 0.750 | 0.394 | | | RCGN-6V | | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RCGX-191200 | 0.750 | 0.500 | | CARBIDE COATINGS: MT-CVD Coated PVD | Coated Uncoated | | | First Cho | oice 💠 | Seco | nd Choic | e • | Alterna | tive 🔺 | Inte | rrupted/ | Milling | * | | Grade o | lescriptio | ns — pa | ges HT 4–5 | | | RPGN-V CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened | Shape: Round | Part Number | | | eel
P | | S
Steel | | lr | ast
on
K | | | eat-Re
Super | | | | St | dened
teel | | Part Number | | ensions
ches) | |--------------|-------------|----------|--------|----------|-------|------------|----------|--------|----------------|----------|--------|-----------------|----------|----------|----------|--------|---------------|-------|-------------|-------|------------------| | V-Bottom | ANSI | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | 009-5W | 009-5M | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | WG-600 | XSYTIN-1 | GEM-8 | ISO | A | т | | | RPGN-2V | A | • | • | • | • | A | • | * | * | • | • | A | * | A | • | * | • | RPGX-060400 | 0.250 | 0.187 | | | RPGN-3V | A | • | • | • | • | | • | * | • | • | • | | * | | • | * | • | RPGX-090700 | 0.375 | 0.312 | | | RPGN-4V | A | • | • | • | • | A | • | * | • | • | • | A | * | A | • | * | • | RPGX-120700 | 0.500 | 0.312 | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened # **Square Inserts** *SNGN* | Shape: Square | Part Number | | Ste | | | S
Steel
M | | lr | ast
on
K | | | eat-R
Super | | | | St | lened
eel
H | | Part Number | Dime | nsions (in | ches) | |---------------|---------------|----------|--------|----------|-------|-----------------|----------|--------|----------------|-------|--------|----------------|--------|----------|----------|--------|-------------------|-------|---------------|-------|------------|-------| | | ANSI | WG-300 | WG-600 | XSYTIN-1 | GEM-8 | WG-600 | WG-600 | GSN100 | XSYTIN-1 | GEM-8 | WG-300 | WG-600 | WG-700 | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | ISO | A | т | R | | | SNGN-128-R4.5 | A | • | • | • | • | A | • | * | • | • | • | • | * | A | • | * | • | SNGN-128-R4.5 | 1.500 | 0.500 | 4.500 | **Edge preparations** — page HT 06 ## H-SROON ## Neutral Carbide and Ceramic Inserts | | Gage Insert | | | Dimensio | ns (inches |) | | | Stan | dard Components | |---------------------|-------------|-------|-------|----------|------------|-------|-------|--------|-------------------|---------------------------| | Part Number | | A | В | С | D | E | F | Shim | Shim
Thickness | Insert Screw | | H-SR00N-24-3-1 | C-CDH-31 | 1.500 | 1.500 | 12.000 | 1.500 | 2.250 | 2.000 | 313665 | 0.125 | SHCS 1/4-20 x 1.25 Long | | H-SR00N-32-3-1 | | 2.000 | 2.000 | 12.000 | 1.500 | N/A | N/A | 313003 | 0.123 | 311C3 1/4-20 X 1.23 Lolly | | H-SR00N-24-4-2 | C-CDH-42 | 1.500 | 1.500 | 12.000 | 1.500 | 2.250 | 2.250 | 3291 | 0.250 | SHCS 1/4-20 x 1.50 Long | | H-SR00N-32-4-2 | CDH-42 | 2.000 | 2.000 | 12.000 | 1.500 | 2.250 | 2.250 | 3231 | 0.230 | 311C3 1/4-20 X 1.30 Long | | H-SROON-32-5-1.5 | C-CDH-51.5 | 2.000 | 2.000 | 12.000 | 2.000 | 2.500 | 2.500 | 313690 | 0.375 | SHCS 3/8-16 x 2.00 Long | | 11-3110011-32-3-1,3 | CDH-51.5 | 2.000 | 2.000 | 12.000 | 2.000 | 2.500 | 2.500 | 313090 | 0.373 | 311C3 3/0-10 X 2.00 LOTIN | C-CDH and CDH inserts can be found on page HT 23. ## Optional | | Gage Insert | | | Optional Inserts and Components | | |-------------------|-------------|------|-------------------|---------------------------------|-----------------| | Part Number | | Shim | Shim
Thickness | Insert Screw | Chip
Breaker | | H-SR00N-24-3-1 | C-CDH-31.5 | N/A | N/A | SHCS 1/4-20 x 1.25 Long | 306727 | | H-SR00N-32-3-1 | CDH-31.5 | N/A | IN/A | 311C3 1/4 20 X 1.23 Long | 300727 | | H-SR00N-24-4-2 | C-CDH-43 | N/A | N/A | SHCS 1/4-20 x 1.50 Long | 304736 | | H-SR00N-32-4-2 | CDH-43 | N/A | IN/ A | 311C3 1/4-20 X 1.30 Long | 304730 | | H-SROON-32-5-1.5 | C-CDH-53 | N/A | N/A | SHCS 3/8-16 x 2.00 Long | 313602 | | 11-3ROOR-32-3-1.3 | CDH-53 | IN/A | IN/A | 311C3 3/0-10 X 2.00 LONG | 313002 | ## **Inserts** # **Shank Options** # Grooving, Profiling, and Cut-Off | Grooving, Profiling, and Cut-Off Inserts | GP 02-20 | |--|----------| | Grade Descriptions | GP 04 | | Insert Grade Reference | GP 05 | | Pictorial Index | GP 07 | | Inserts | GP 08-20 | | | | | Toolholders and Bars | GP 21-46 | | Pictorial Index | GP 22-23 | | Toolholders and Bars | GP 24-46 | | | | | Support Blades | GP 47-61 | | Support Blade Overview | GP 48-49 | | Support Blades | | ## Grooving, Profiling and Cut-Off Inserts Greenleaf offers one of the most comprehensive lines of grooving, profiling, and cut-off inserts in the industry. The single-ended V-bottom grooving systems allow greater depth of cut and optimal transfer of cutting forces for carbide and ceramic inserts. Our advanced MT-CVD-coated and PVD-coated grades have the strength and wear resistance needed for higher cutting speeds and tool life. Greenleaf is the industry leader in the development and manufacture of ceramic and coated ceramic inserts, including WG-600® and WG-700™ —
second-generation, coated ceramic-composite cutting tools using whisker reinforcement. The coatings protect the already heat-resistant substrate from additional heat encountered in grooving applications and appreciably extend tool life. ## Insert Grades ## **Carbide** ## **CVD Coated** #### GA5025 A high-speed MT-CVD coated grade developed primarily for turning, GA5025 excels in light roughing and finishing applications of carbon and alloy steels, including select stainless steels. GA5025 is preferred in grooving and profiling applications where tool life and wear resistance are essential. #### **GA5026** A high-performance grade specifically developed for finish-turning in nickel- and cobalt-based super-alloys, stainless steels, hardened steels, and refractory metals. The combination of an advanced MT-CVD coating over a hard, sub-micron grain carbide offers outstanding wear resistance while maintaining exceptional resistance to notching and deformation common in turning of high-strength materials. GA5026 is best applied at high speeds and low feed rates. #### GA5035 A high-performance MT-CVD coated grade for turning in all types of steels, GA5035 can be used from rough to finish-turning applications that require resistance to heat deformation and abrasion. GA5035 is the primary choice for steel grooving and profiling applications, and should be applied at high speeds and moderate feed rates. #### GA5036 A high-speed MT-CVD coated grade developed primarily for milling, GA5036 excels in grooving and profiling applications of forged and cast steels, as well as select stainless steels where toughness and heat resistance are required. GA5036 is best applied at high cutting speeds and moderate feed rates. #### **GA5125** A high-performance MT-CVD coated carbide grade developed specifically for milling manganese steel, GA5125 can also be applied to interrupted and continuous grooving and profiling applications in chrome-moly steel, tool steel and similar high alloy steels. GA5125 offers excellent wear, built-up edge, thermal shock and deformation resistance, and is best applied at high cutting speeds with moderate feed rates. ## **PVD Coated** #### G-915 A tough PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels and low-carbon steels. The multi-layer PVD coating provides heat and abrasion resistance to the tough substrate, making G-915 a versatile grade choice that performs well in a variety of materials and grooving, profiling and cut-off applications. G-915 is best applied at moderate speeds and moderate-to-high feed rates. #### G-920 A high-speed PVD-coated grade for light-to-medium turning applications of heat-resistant alloys and select stainless steels, G-920 is also an excellent grade option for machining aluminum and refractory metals. The resistance to deformation and notching which allows the use of high cutting speeds makes G-920 wellsuited to grooving and finish profiling applications in heat-resistant alloys. #### G-925 A high-performance multi-layered PVD-coated grade, G-925 is specifically designed for machining abrasive and difficult-to-machine materials. Typical applications include grooving and profiling of heat-resistant alloys, titanium, and other refractory metals, stainless steels, and ductile cast irons. G-925 exhibits excellent resistance to notching and deformation, and should be applied at moderate-to-high speeds and moderate feed rates. #### G-935 A multi-layer PVD-coated grade primarily for steel milling and turning applications requiring additional resistance to mechanical and thermal shock. These properties make G-935 an ideal choice in grooving and profiling applications where toughness is essential. G-935 is best applied at high cutting speeds and moderate feed rates. #### G-9610 An advanced PVD-coated grade, G-9610 is specifically designed for turning, grooving and profiling applications in all grades of titanium. The high-tech coating provides wear-resistance, chemical stability and a smooth, lubricious outer layer which protects the hard, sub-micron grain substrate and enables high cutting speeds and extended tool life for continuous cuts in non-ferrous alloys. #### **Uncoated** #### G-10 A medium grain carbide grade suited for the mediumto-heavy roughing of titanium and Heat-Resistant Super Alloys. #### **G-20M** A sub-micron C-2 carbide grade suited for use in lightto-medium turning, grooving and profiling of titanium and heat-resistant super alloys. G-20M has the edge strength and edge wear characteristics necessary to resist notching when grooving high-strength materials. ## **Ceramic** ## WG-300® A SiC whisker-reinforced Al_2O_3 ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300 $^{\circ}$ the first choice worldwide for grooving difficult materials. #### WG-600® A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600° include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as grooving of hardened steels and select stainless steels. WG-600° is particularly well-suited for finish-turning and grooving of Heat-Resistant Super Alloys and is unmatched in both grooving and milling of steels with a hardness above 60 HRc. #### WG-700™ A SiC whisker-reinforced Al₂O₃ ceramic featuring improved toughness and a unique low-friction coating. WG-700™ is ideal for turning, grooving, and profiling nickel- and cobalt-based super alloys that other ceramics may struggle in. WG-700™ exhibits exceptional tool life and productivity in next-generation formulations or novel heat treatments of heat-resistant super alloys lower, and long-reach or thin-walled applications with lower rigidity. #### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted turning, forging scale removal and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### **GSN100™** An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. #### GEM-8™ An $Al_2O_3 + TiC$ composite ceramic exhibiting excellent hardness and strength at elevated temperatures. GEM- 8^{TM} offers a high degree of predictability in roll turning and continuous cuts in ferrous alloys. ## Insert Grade Reference for Grooving, Profiling, and Cut-Off ## **Pictorial Index** ## **Greenleaf Cut-Off System** COS page: GP 08 ## Single-Ended Groovers GTS Style Full Nose page: GP 09 GTS Style Flat Nose page: GP 09 WG-Style Full Nose page: GP 10 WG-Style Flat Nose page: GP 11 WGC Full Nose page: GP 12 WGC Flat Nose page: GP 13 ## **V-Bottom Round Inserts** RCGN Positive: Carbide page: GP 14 RCGN Positive: Ceramic page: GP 14 RPGN Positive: Carbide page: GP 15 RPGN Positive: Ceramic page: GP 15 RCGR/RPGR Positive Chipform V-Bottom page: GP 16 RCGT/RPGT Positive Chipform V-Bottom page: GP 17 # 35° and 55° V-Bottom Diamond Inserts GP # **Greenleaf Cut-Off System** 0° Lead 4° Left Hand 4° Right Hand | Shape: Groove/Turn | Part Number | | Part Number | | Dimension | s (inches) | | |--------------------|-------------|-------|-------------|-------|-----------|------------|-------| | | ANSI | G-915 | ISO | W | L | Ţ | R | | | COS-4094-0 | • | COS-4094-0 | 0.094 | 0.500 | 0.187 | 0.010 | | | COS-4125-0 | • | COS-4125-0 | 0.125 | 0.500 | 0.187 | 0.010 | | | COS-4187-0 | • | COS-4187-0 | 0.187 | 0.500 | 0.187 | 0.010 | | _ | COS-4094-4L | • | COS-4094-4L | 0.094 | 0.500 | 0.187 | 0.010 | | | COS-4125-4L | • | COS-4125-4L | 0.125 | 0.500 | 0.187 | 0.010 | | | COS-4187-4L | • | COS-4187-4L | 0.187 | 0.500 | 0.187 | 0.010 | | _ | COS-4094-4R | • | COS-4094-4R | 0.094 | 0.500 | 0.187 | 0.010 | | | COS-4125-4R | • | COS-4125-4R | 0.125 | 0.500 | 0.187 | 0.010 | | | COS-4187-4R | • | COS-4187-4R | 0.187 | 0.500 | 0.187 | 0.010 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated See pages GP 31, GP 34 and GP 39 for toolholders. st Choice Second Choice Alternative 🔺 Interrupted/Milling 4 # GTS Style, Full Nose Grooving Inserts | Shamar Cua ana /Turra | Part Number | | Steel | | St | nless
eel | Cast
Iron
K | Resi
Super | eat
stant
Alloys | | | Dimension | ns (inches) | | |-----------------------|-------------|----------|-------|-------|--------|--------------|-------------------|---------------|------------------------|--------------------|-------|-----------|-------------|------| | Shape: Groove/Turn | ANSI | GA5035 | G-915 | G-935 | GA5026 | G-915 | G-915 | GA5026 | G-925 | Part Number
ISO | w | L | T | R | | _ | GTS-4125 | A | • | • | • | • | • | • | • | GTS-4125 | 0.125 | 0.500 | 0.187 | Full | | | GTS-4187 | A | • | • | • | • | • | • | • | GTS-4187 | 0.187 | 0.500 | 0.187 | Full | | | GTS-6250 | A | • | • | • | • | • | • | • | GTS-6250 | 0.250 | 0.750 | 0.250 | Full | # GTS Style, Flat Nose Grooving Inserts | | D (N) | | Steel | | St | | Cast
Iron | Resi | eat
stant
Alloys | | | Dimension | ns (inches) | | |--------------------|---------------------|----------|-------|-------
--------|-------|--------------|--------|------------------------|--------------------|-------|-----------|-------------|-------| | Shape: Groove/Turn | Part Number
ANSI | GA5035 | G-915 | G-935 | GA5026 | G-915 | G-915 | GA5026 | 6-925 | Part Number
ISO | w | L | Т | R | | | GTS-4125-1 | A | • | • | + | • | • | • | • | GTS-4125-1 | 0.125 | 0.500 | 0.187 | 0.015 | | | GTS-4125-2 | A | • | • | • | • | * | • | • | GTS-4125-2 | 0.125 | 0.500 | 0.187 | 0.031 | | | GTS-4187-1 | A | • | • | • | • | • | • | • | GTS-4187-1 | 0.187 | 0.500 | 0.187 | 0.015 | | | GTS-4187-2 | | • | • | • | • | • | • | • | GTS-4187-2 | 0.187 | 0.500 | 0.187 | 0.031 | | | GTS-6250-1 | A | • | • | • | • | • | • | • | GTS-6250-1 | 0.250 | 0.750 | 0.250 | 0.015 | | | GTS-6250-2 | A | • | • | • | • | • | • | • | GTS-6250-2 | 0.250 | 0.750 | 0.250 | 0.031 | CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated Grade descriptions — pages GP 04 # WG-Style, Full Nose Grooving Inserts | | | S
Steel | | Cast
Iron | | | leat-Ro
Super | | | | | ened
eel | | | 0 |)imensio | ns (inches | 5) | |----------------|-------------|------------|--------|--------------|--------|--------|------------------|----------|----------|--------|--------|-------------|----------|-------------|-------|----------|------------|------| | Shape: Groover | Part Number | M | | K | | | | S | | | | Н | | Part Number | | | | | | | ANSI | 009-5M | GSN100 | XSYTIN-1 | 009-5M | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | w | L | Т | R | | | WG-4094 | • | • | | • | • | • | | | • | • | * | A | WG-4094 | 0.094 | 0.500 | 0.187 | Full | | | WG-4125 | • | • | | • | • | • | | | • | • | * | | WG-4125 | 0.125 | 0.500 | 0.187 | Full | | | WG-4156 | • | • | | • | • | • | | | • | • | * | | WG-4156 | 0.156 | 0.500 | 0.187 | Full | | | WG-4187 | • | • | | • | • | • | | | • | • | * | | WG-4187 | 0.187 | 0.500 | 0.187 | Full | | | WG-6218 | • | • | | • | • | • | | | • | • | * | | WG-6218 | 0.218 | 0.750 | 0.250 | Full | | | WG-6250 | • | • | | • | • | • | | | • | • | * | | WG-6250 | 0.250 | 0.750 | 0.250 | Full | | | WG-6281 | • | • | A | • | • | • | | A | • | • | * | A | WG-6281 | 0.281 | 0.750 | 0.250 | Full | | | WG-8312 | • | • | | • | • | • | | A | • | • | * | | WG-8312 | 0.312 | 1.000 | 0.337 | Full | | | WG-8344 | • | • | A | • | • | • | A | A | • | • | * | A | WG-8344 | 0.344 | 1.000 | 0.337 | Full | | | WG-8375 | • | • | | • | • | • | | | • | • | * | | WG-8375 | 0.375 | 1.000 | 0.337 | Full | ERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC First Choice Second Choice Alternative Interrupted/Milling # WG-Style, Flat Nose Grooving Inserts | | | S
Steel | | Cast
Iron | | | eat-R
Super | | | | | lened
eel | | | D | imensio | ns (inches | :) | |--|-------------|------------|--------|--------------|--------|----------|----------------|----------|----------|-----------|--------|--------------|----------|----------------------------------|-------|---------|------------|-------| | Shape: Groover | Part Number | M | | K | | | | S | | | l | Н | | Part Number | | | | | | | ANSI | 009-5W | GSN100 | XSYTIN-1 | 009-5M | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | w | L | т | R | | | WG-4094-1 | • | • | A | • | • | • | | | • | • | * | | WG-4094-1 | 0.094 | 0.500 | 0.187 | 0.015 | | | WG-4094-2 | • | • | | • | • | • | | | • | • | * | | WG-4094-2 | 0.094 | 0.500 | 0.187 | 0.031 | | | WG-4125-1 | • | • | A | • | • | • | A | A | • | • | * | A | WG-4125-1 | 0.125 | 0.500 | 0.187 | 0.015 | | | WG-4125-2 | • | • | | • | • | • | | | • | • | * | | WG-4125-2 | 0.125 | 0.500 | 0.187 | 0.031 | | | WG-4156-1 | • | • | | • | • | • | | | • | • | * | | WG-4156-1 | 0.156 | 0.500 | 0.187 | 0.015 | | | WG-4156-2 | • | • | | • | • | • | | | • | • | * | | WG-4156-2 | 0.156 | 0.500 | 0.187 | 0.031 | | | WG-4156-3 | • | • | | • | • | • | | | • | • | * | | WG-4156-3 | 0.156 | 0.500 | 0.187 | 0.046 | | | WG-4187-1 | • | • | | • | | • | | | • | • | * | | WG-4187-1 | 0.187 | 0.500 | 0.187 | 0.015 | | | WG-4187-2 | • | • | | • | • | • | | | • | • | * | | WG-4187-2 | 0.187 | 0.500 | 0.187 | 0.031 | | | WG-6218-1 | • | • | | • | • | • | | | • | • | * | | WG-6218-1 | 0.218 | 0.750 | 0.250 | 0.015 | | | WG-6218-2 | • | • | | • | • | • | | | • | • | * | | WG-6218-2 | 0.218 | 0.750 | 0.250 | 0.031 | | | WG-6250-1 | • | • | | • | • | • | | | • | • | * | | WG-6250-1 | 0.250 | 0.750 | 0.250 | 0.015 | | | WG-6250-2 | • | • | | • | • | • | | | • | • | * | | WG-6250-2 | 0.250 | 0.750 | 0.250 | 0.031 | | | WG-6250-3 | • | • | | • | • | • | | | • | • | * | | WG-6250-3 | 0.250 | 0.750 | 0.250 | 0.046 | | | WG-6250-4 | • | • | A | • | • | • | A | A | • | • | * | A | WG-6250-4 | 0.250 | 0.750 | 0.250 | 0.062 | | | WG-6281-1 | • | • | | • | • | • | | | • | • | * | | WG-6281-1 | 0.281 | 0.750 | 0.250 | 0.015 | | | WG-6281-2 | • | • | A | • | • | • | A | A | • | • | * | A | WG-6281-2 | 0.281 | 0.750 | 0.250 | 0.031 | | | WG-6281-3 | • | • | | • | • | • | | | • | • | * | | WG-6281-3 | 0.281 | 0.750 | 0.250 | 0.046 | | | WG-8312-1 | • | • | A | • | • | • | A | A | • | • | * | A | WG-8312-1 | 0.312 | 1.000 | 0.337 | 0.015 | | | WG-8312-2 | • | • | | • | • | • | | A | • | • | * | | WG-8312-2 | 0.312 | 1.000 | 0.337 | 0.031 | | | WG-8312-3 | • | • | A | • | • | • | A | | • | • | * | A | WG-8312-3 | 0.312 | 1.000 | 0.337 | 0.046 | | | WG-8312-4 | • | • | | • | • | • | | | • | • | * | | WG-8312-4 | 0.312 | 1.000 | 0.337 | 0.062 | | | WG-8344-1 | • | • | | • | • | • | | | • | • | * | A | WG-8344-1 | 0.344 | 1.000 | 0.337 | 0.015 | | | WG-8344-2 | • | • | | • | • | • | | | • | • | * | | WG-8344-2 | 0.344 | 1.000 | 0.337 | 0.031 | | | WG-8344-3 | • | • | A | • | • | • | A | A | • | • | * | A | WG-8344-3 | 0.344 | 1.000 | 0.337 | 0.046 | | | WG-8344-4 | • | • | | • | • | • | | | • | • | * | | WG-8344-4 | 0.344 | 1.000 | 0.337 | 0.062 | | | WG-8375-1 | • | • | A | • | • | • | A | A | • | • | * | A | WG-8375-1 | 0.375 | 1.000 | 0.337 | 0.015 | | | WG-8375-2 | • | • | | • | • | • | | | • | • | * | | WG-8375-2 | 0.375 | 1.000 | 0.337 | 0.031 | | | WG-8375-3 | • | • | A | • | • | • | A | A | • | • | * | A | WG-8375-3 | 0.375 | 1.000 | 0.337 | 0.046 | | | WG-8375-4 | • | • | | • | • | • | | | • | • | * | | WG-8375-4 | 0.375 | 1.000 | 0.337 | 0.062 | | GERANIC CLASSIFICATION: Whisker Ceramic Dh | | <u> </u> | | <u> </u> | | Choice • | | ernative | 1 | terrunted | | | | Grade descriptions — pages GP 05 | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon First Cho t Choice Second Choice Alternative Interrupted/Milling # WGC, Full Nose Grooving Inserts | | | S
Steel | | Cast
Iron | | | leat-R
Super | | | | | ened
eel | | | 0 | imensio | ns (inches | s) | |----------------|-------------|------------|--------|--------------|--------|--------|-----------------|----------|----------|--------|--------|-------------|----------|-------------|-------|---------|------------|------| | Shape: Groover | Part Number | M | | K | | | | S | | | ! | Н | | Part Number | | | | | | | ANSI | 009-5M | GSN100 | XSYTIN-1 | 009-5M | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | w | L | T | R | | | WGC-4094 | • | • | | • | • | • | | | • | • | * | | WGC-4094 | 0.094 | 0.500 | 0.187 | Full | | | WGC-4125 | • | • | | • | • | • | | | • | • | * | | WGC-4125 | 0.125 | 0.500 | 0.187 | Full | | | WGC-4156 | • | • | | • | • | • | | | • | • | * | | WGC-4156 | 0.156 | 0.500 | 0.187 | Full | | | WGC-4187 | • | • | | • | • | • | | | • | • | * | | WGC-4187 | 0.187 | 0.500 | 0.187 | Full | | | WGC-6218 | • | • | A | • | • | • | A | A | • | • | * | A | WGC-6218 | 0.218 | 0.750 | 0.250 | Full | | | WGC-6250 | • | • | | • | • | • | A | A | • | • | * | A | WGC-6250 | 0.250 | 0.750 | 0.250 | Full | | | WGC-6281 | • | • | A | • | • | • | | A | • | • | * | | WGC-6281 | 0.281 | 0.750 | 0.250 | Full | | | WGC-8312 | • | • | | • | • | • | | A | • | • | * | | WGC-8312 | 0.312 | 1.000 | 0.337 | Full | | | WGC-8344 | • | • | | • | • | • | A | A | • | • | * | A | WGC-8344 | 0.344 | 1.000 | 0.337 | Full | | | WGC-8375 | • | • | | • | • | • | | | • | • | * | | WGC-8375 | 0.375 | 1.000 | 0.337 | Full | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC First Choice ◆ st Choice ◆ Second Choice ● Alternative ▲ Interrupted/Milling # WGC, Flat Nose Grooving Inserts | | | S
Steel | | Cast
Iron | | Н | eat-R
Super | esista
Alloy | nt
'S | | St | lened
eel | | | | Dimension | ns (inches | s) | |----------------|-------------|------------|--------|--------------|--------|--------|----------------|-----------------|----------|--------|--------|--------------|----------|-------------|-------|-----------|------------|-------| | Shape: Groover | Part Number | M | | K | | | | S | | | | Н | | Part Number | | | | | | | ANSI | MG-600 | GSN100 | 1-NILASX | 009-5M | WG-300 | 009-5M | MG-700 | 1-NILASX | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | W | L | Т | R | | | WGC-4094-1 | • | • | | • | • | • | | | • | • | * | | WGC-4094-1 | 0.094 | 0.500 | 0.187 | 0.015 | | | WGC-4094-2 | • | • | | • | • | • | | | • | • | * | | WGC-4094-2 | 0.094 | 0.500 | 0.187 | 0.031 | | | WGC-4125-1 | • | • | | • | • | • | | | • | • | * | | WGC-4125-1 | 0.125 | 0.500 | 0.187 | 0.015 | | | WGC-4125-2 | • | • | | • | • | • | | | • | • | * | | WGC-4125-2 | 0.125 | 0.500 | 0.187 | 0.031 | | | WGC-4156-1 | • | • | | • | • | • | | | • | • | * | | WGC-4156-1
 0.156 | 0.500 | 0.187 | 0.015 | | | WGC-4156-2 | • | • | | • | • | • | | | • | • | * | | WGC-4156-2 | 0.156 | 0.500 | 0.187 | 0.031 | | | WGC-4187-1 | • | • | A | • | • | • | | | • | • | * | | WGC-4187-1 | 0.187 | 0.500 | 0.187 | 0.015 | | | WGC-4187-2 | • | • | | • | • | • | | | • | • | * | | WGC-4187-2 | 0.187 | 0.500 | 0.187 | 0.031 | | | WGC-6218-1 | • | • | | • | • | • | | | • | • | * | | WGC-6218-1 | 0.218 | 0.750 | 0.250 | 0.015 | | | WGC-6218-2 | • | • | | • | • | • | | | • | • | * | | WGC-6218-2 | 0.218 | 0.750 | 0.250 | 0.031 | | | WGC-6250-1 | • | • | | • | • | • | | | • | • | * | | WGC-6250-1 | 0.250 | 0.750 | 0.250 | 0.015 | | | WGC-6250-2 | • | • | | • | • | • | | | • | • | * | | WGC-6250-2 | 0.250 | 0.750 | 0.250 | 0.031 | | | WGC-6250-3 | • | • | A | • | • | • | A | | • | • | * | | WGC-6250-3 | 0.250 | 0.750 | 0.250 | 0.046 | | | WGC-6281-1 | • | • | | • | • | • | A | | • | • | * | A | WGC-6281-1 | 0.281 | 0.750 | 0.250 | 0.015 | | | WGC-6281-2 | • | • | A | • | • | • | A | A | • | • | * | A | WGC-6281-2 | 0.281 | 0.750 | 0.250 | 0.031 | | • | WGC-6281-3 | • | • | | • | • | • | | | • | • | * | | WGC-6281-3 | 0.281 | 0.750 | 0.250 | 0.046 | | | WGC-8312-1 | • | • | A | • | • | • | A | | • | • | * | A | WGC-8312-1 | 0.312 | 1.000 | 0.337 | 0.015 | | | WGC-8312-2 | • | • | | • | • | • | | | • | • | * | | WGC-8312-2 | 0.312 | 1.000 | 0.337 | 0.031 | | | WGC-8312-3 | • | • | A | • | • | • | | A | • | • | * | A | WGC-8312-3 | 0.312 | 1.000 | 0.337 | 0.046 | | | WGC-8312-4 | • | • | | • | • | • | | | • | • | * | A | WGC-8312-4 | 0.312 | 1.000 | 0.337 | 0.062 | | | WGC-8344-1 | • | • | A | • | • | • | | | • | • | * | A | WGC-8344-1 | 0.344 | 1.000 | 0.337 | 0.015 | | | WGC-8344-2 | • | • | | • | • | • | | A | • | • | * | | WGC-8344-2 | 0.344 | 1.000 | 0.337 | 0.031 | | | WGC-8344-3 | • | • | A | • | • | • | A | A | • | • | * | A | WGC-8344-3 | 0.344 | 1.000 | 0.337 | 0.046 | | | WGC-8344-4 | • | • | | • | • | • | | | • | • | * | A | WGC-8344-4 | 0.344 | 1.000 | 0.337 | 0.062 | | | WGC-8375-1 | • | • | A | • | • | • | A | A | • | • | * | A | WGC-8375-1 | 0.375 | 1.000 | 0.337 | 0.015 | | | WGC-8375-2 | • | • | | • | • | • | | | • | • | * | | WGC-8375-2 | 0.375 | 1.000 | 0.337 | 0.031 | | | WGC-8375-3 | • | • | A | • | • | • | A | A | • | • | * | A | WGC-8375-3 | 0.375 | 1.000 | 0.337 | 0.046 | | | WGC-8375-4 | • | • | | • | • | • | | | • | • | * | | WGC-8375-4 | 0.375 | 1.000 | 0.337 | 0.062 | ## **Round Positive V-Bottom Inserts** RCGN-V — Carbide | Shape: | Part Number | | | eel | | S | tainle
Steel
M | | Cast
Iron
K | | | | t-Resi
per Al | | | | Part Number | Dimension | ns (inches) | |----------------|-------------|--------|--------|----------|--------|--------|----------------------|-------|-------------------|-------|------|--------|------------------|-------|----------|-------|-------------|-----------|-------------| | Round V-Bottom | ANSI | GA5025 | GA5035 | GA5125 | GA5036 | GA5026 | G-925 | G-915 | GA5023 | 6-915 | 6-10 | GA5026 | G-9610 | G-925 | G-920 | G-20M | ISO | A | т | | | RCGN-2V | • | • | A | * | • | • | * | • | * | * | • | A | • | A | | RCGX-060400 | 0.250 | 0.187 | | | RCGX-102 | • | • | | * | • | • | * | • | * | * | • | A | • | | | RCGX-060600 | 0.250 | 0.250 | | | RCGN-3V | • | • | A | * | • | • | * | • | * | * | • | A | • | | | RCGX-090700 | 0.375 | 0.312 | | | RCGN-4V | • | • | | * | • | • | * | • | * | * | • | | • | | | RCGX-120700 | 0.500 | 0.312 | First Choice lacktriangle Second Choice lacktriangle Alternative lacktriangle Interrupted/Milling lacktriangle # **Round Positive V-Bottom Inserts** RCGN-V — Ceramic CARBIDE COATINGS: MT-CVD Coated PVD Coated Uncoated **Grade descriptions** — pages GP 04 **Grade descriptions** — pages GP 05 | | | S
Steel | | Cast
Iron | | | | esista
Alloy | | | St | ened
eel | | | Dimei
(inc | nsions
hes) | |----------------|-------------|------------|----------|--------------|--------|--------|----------|-----------------|----------|--------|--------|-------------|----------|-------------|---------------|----------------| | Shape: | Part Number | M | | K | | | | 5 | | | | Н | | Part Number | | | | Round V-Bottom | ANSI | 009-5M | 00LNS9 | XSYTIN-1 | 009-5M | MG-300 | 009-5M | 00Z-5M | 1-NILASX | 00E-9M | 009-5M | XSYTIN-1 | GEM-8 | ISO | A | T | | | RCGN-2V | • | • | A | • | • | * | | | • | • | * | A | RCGX-060400 | 0.250 | 0.187 | | | RCGX-102 | • | * | | • | • | ♦ | | A | • | • | * | A | RCGX-060600 | 0.250 | 0.250 | | | RCGN-3V | • | • | A | • | • | * | A | A | • | • | * | A | RCGX-090700 | 0.375 | 0.312 | | | RCGN-4V | • | • | | • | • | * | | | • | • | * | | RCGX-120700 | 0.500 | 0.312 | | _ | | | | | | | | | | | | | | | | | See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. # **GROOVING, PROFILING, and CUT-OFF** ## **Round Positive V-Bottom Inserts** RPGN-V — Carbide | Shape: | Part Number | | Ste | eel | | Si | tainle
Steel
M | | Cast
Iron
K | | | | t-Resi:
per All | | | | Part Number | Dimension | is (inches) | |--|-------------|--------|--------|----------|-----------|------------|----------------------|-------|-------------------|---------|-------|----------|--------------------|-------|----------|------------|----------------------|-----------|-------------| | Round V-Bottom | ANSI | GA5025 | GA5035 | GA5125 | GA5036 | GA5026 | G-925 | 6-915 | GA5023 | G-915 | 6-10 | GA5026 | G-9610 | G-925 | G-920 | G-20M | ISO | A | T | | | RPGN-2V | • | • | A | * | • | • | * | • | * | * | • | A | • | A | A | RPGX-060400 | 0.250 | 0.187 | | | RPGN-3V | • | • | | * | • | • | * | • | * | * | • | A | • | | | RPGX-090700 | 0.375 | 0.312 | | | RPGN-4V | • | • | A | * | • | • | * | • | * | * | • | A | • | A | • | RPGX-120700 | 0.500 | 0.312 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated | Uncoated | | | Fir | st Choice | ♦ S | econd Ch | oice | Altern | ative 🔺 | Inter | rupted/M | illing � | | Gra | de descrip | otions — pages GP 04 | | | ## **Round Positive V-Bottom Inserts** RPGN-V — Ceramic | Shape: | Part Number | S
Steel | | Cast
Iron
K | | | eat-R
Super | | | | St | ened
eel
H | | Part Number | | nsions
:hes) | |---|---|-------------|----------|-------------------|---------|--------|----------------|----------|-----------|-----------|--------|------------------|-----------|-----------------------|-------|-----------------| | Round V-Bottom | ANSI | 009-9M | GSN100 | XSYTIN-1 | MG-600 | WG-300 | 009-9M | WG-700 | XSYTIN-1 | WG-300 | MG-600 | XSYTIN-1 | GEM-8 | ISO | A | Т | | | RPGN-2V | • | • | A | • | • | • | A | A | • | • | * | A | RPGX-060400 | 0.250 | 0.187 | | | RPGN-3V | • | * | A | • | • | • | | A | • | • | * | A | RPGX-090700 | 0.375 | 0.312 | | | RPGN-4V | • | • | A | • | • | • | • | • | • | • | * | • | RPGX-120700 | 0.500 | 0.312 | | CERAMIC CLASSIFICATION: Whisker Ceramic Ph. | ase-Toughened Silicon Nitride Alumina TiC | irst Choice | * | Second Ch | hoice • | Alter | native 🔺 | Inte | rrupted/N | lilling � | | Gr | ade descr | iptions — pages GP 05 | | | See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. # Round Positive Chipform V-Bottom Inserts 1200 RCGR-V/RPGR-V — Carbide | | | | St | eel | | S | tainle
Steel | | Cast
Iron | | | | t-Resis
per All | | | | | Dim | ensions (inc | hes) | |----------------|-------------|--------|--------|--------|--------|--------|-----------------|-------|--------------|-------|------|--------|--------------------|----------|-------|-------|-----------------|-------|--------------|------| | Shape: | Part Number | | - 1 | P | | | M | | K | | | | S | | | | Part Number | | , | | | Round V-Bottom | ANSI | GA5025 | GA5035 | GA5125 | GA5036 | GA5026 | G-925 | G-915 | GA5023 | G-915 | 6-10 | GA5026 | G-9610 | G-925 | G-920 | G-20M | ISO | A | Т | х | | | RCGR-2V-TF | | | | | • | • | | | | | • | | • | | | RCGR-060400V-TF | 0.250 | 0.187 | 7° | | | RCGR-3V-TF | | | | | • | • | | | | | • | A | ♦ | | | RCGR-090700V-TF | 0.375 | 0.312 | 7° | | | RCGR-4V-TF | | | | | • | • | | | | | • | A | • | | | RCGR-120700V-TF | 0.500 | 0.312 | 7° | | | RPGR-2V-TF | | | | | • | • | | | | | • | | • | | | RPGX-060400V-TF | 0.250 | 0.187 | 11° | | | RPGR-3V-TF | | | | | • | • | | | | | • | | • | | | RPGX-090700V-TF | 0.375 | 0.312 | 11° | | | RPGR-4V-TF | | | | | • | • | | | | | • | | • | | | RPGX-120700V-TF | 0.500 | 0.312 | 11° | # Round Positive Chipform V-Bottom Inserts 120° RCGR-V/RPGR-V — Ceramic | Shape: | Part Number | S
Steel
M | | Cast
Iron
K | | | leat-R
Super | | | | St | ened
eel
H | | Part Number | | imension
(inches) | | |----------------|-------------|-----------------|--------|-------------------|--------|--------|-----------------|----------|----------|--------|--------|------------------|-------|------------------|-------|----------------------|-----| | Round V-Bottom | ANSI | 009-5M | GSN100 | XSYTIN-1 | 009-5M | WG-300 | 009-5W | WG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | A | T | х | | | RCGR-2V-GF1 | • | | A | • | • | • | A | A | • | • | * | | RCGR-060400V-GF1 | 0.250 | 0.187 | 7° | | | RCGR-3V-GF1 | • | | A | • | • | • | | | • | • | * | | RCGR-090700V-GF1 |
0.375 | 0.312 | 7° | | | RCGR-4V-GF1 | • | | | • | • | • | | | • | • | * | | RCGR-120700V-GF1 | 0.500 | 0.312 | 7° | | | RPGR-2V-GF1 | • | | | • | • | • | | | • | • | * | | RPGR-060400V-GF1 | 0.250 | 0.187 | 11° | | | RPGR-3V-GF1 | • | | A | • | • | • | | | • | • | * | | RPGR-090700V-GF1 | 0.375 | 0.312 | 11° | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened Silicon Nitride Alumina TiC First Choice Second Choice Alternative A Interrupted/Milling Second Choice Grade descriptions—pages GP 05 # Round Positive Chipform V-Bottom Inserts A 120° RCGT-V — Carbide | Shape: | Part Number | | Sto | eel
P | | S | tainle
Steel
M | | Cast
Iron
K | | | | t-Resister All | | | | Part Number | Dimension | ns (inches) | |----------------|-------------|--------|--------|----------|--------|--------|----------------------|-------|-------------------|-------|------|--------|----------------|-------|-------|-------|-----------------|-----------|-------------| | Round V-Bottom | ANSI | GA5025 | GA5035 | GA5125 | GA5036 | GA5026 | G-925 | G-915 | GA5023 | G-915 | G-10 | GA5026 | G-9610 | G-925 | 0-920 | G-20M | ISO | A i.c. | T | | | RCGT-2V-TF | | | | | • | • | | | | | • | A | • | | | RCGT-060400V-TF | 0.250 | 0.187 | | | RCGT-3V-TF | | | | | • | • | | | | | • | A | • | | | RCGT-090700V-TF | 0.375 | 0.312 | | | RCGT-4V-TF | | | | | • | • | | | | | • | • | • | • | • | RCGT-120700V-TF | 0.500 | 0.312 | # Round Positive Chipform V-Bottom Inserts RPGT-V — Carbide | Shape: | Part Number | | | eel | | S | tainle
Steel
M | | Cast
Iron
K | | | | t-Resis
per All | | | | Part Number | Dimension | ns (inches) | |--|-------------|--------|--------|--------|-----------|------------|----------------------|-------|-------------------|---------|-------|---------|--------------------|-------|----------|------------|----------------------|-----------|-------------| | Round V-Bottom | ANSI | GA5025 | GA5035 | GA5125 | GA5036 | GA5026 | G-925 | G-915 | GA5023 | G-915 | G-10 | GA5026 | G-9610 | G-925 | G-920 | G-20M | ISO | A i.c. | Т | | | RPGT-2V-TF | | | | | • | • | | | | | • | A | • | A | A | RPGT-060400V-TF | 0.250 | 0.187 | | | RPGT-3V-TF | | | | | • | • | | | | | • | A | • | | | RPGT-090700V-TF | 0.375 | 0.312 | | | RPGT-4V-TF | | | | | • | • | | | | | • | A | • | A | A | RPGT-120700V-TF | 0.500 | 0.312 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated | Uncoated | | | Fir | st Choice | ♦ S | econd Ch | oice | Altern | ative 🔺 | Inter | upted/M | illing � | | Gra | de descrip | ntions — pages GP 04 | | | ## 35° V-Bottom Inserts (VPG-V) | Shape: | Part Number
ANSI | S
Steel
M | | Cast
Iron
K | | | | esista
Alloy: | | | St | lened
eel
H | | Part Number | | Dimer
(incl | | | |--------------|---------------------|-----------------|--------|-------------------|--------|--------|--------|------------------|----------|--------|--------|-------------------|-------|-------------|-------|----------------|-------|-------| | 35° V-Bottom | ANSI | 009-5M | GSN100 | XSYTIN-1 | 009-5M | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | w | L | T | R | | | VPG-33.542V | • | | A | • | • | • | A | A | • | • | * | | VPG-33.542V | 0.375 | 0.875 | 0.250 | 0.031 | | | VPG-33.543V | • | | | • | • | • | | | • | • | * | | VPG-33.543V | 0.375 | 0.875 | 0.250 | 0.046 | CERAMIC CLASSIFICATION: Whister Ceramic Phase-Toughened Sincon Nimbe Alumina IIC First Choice Second Choice Alternative Alumina IIC Interrupted/Milling See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. ## 35° V-Bottom Inserts (VCGN-V) | Shape: | Part Number | S
Steel
M | | Cast
Iron
K | | | | esista
Alloy: | | | St | lened
eel
H | | Part Number | | Dimer
(incl | | | |--------------|-------------|-----------------|--------|-------------------|--------|--------|--------|------------------|----------|--------|--------|-------------------|-------|-------------|-------|----------------|-------|-------| | 35° V-Bottom | ANSI | 009-5W | GSN100 | XSYTIN-1 | 009-5W | WG-300 | 009-5M | 00Z-5M | XSYTIN-1 | WG-300 | 009-5W | XSYTIN-1 | GEM-8 | ISO | I.C. | L | T | R | | | VCGN-2.532V | • | | A | • | • | • | | | • | • | * | | VCGN-2.532V | 0.312 | 0.892 | 0.187 | 0.031 | | | VCGN-2.533V | • | | | • | • | • | | | • | • | * | | VCGN-2.533V | 0.312 | 0.819 | 0.187 | 0.047 | $See \ pages\ ATI\ 22-23\ for\ information\ on\ edge\ preps.\ For\ availability\ and\ any\ application\ concerns,\ please\ contact\ Greenleaf\ Technical\ Service.$ **Grade descriptions** — pages GP 05 ## 55° V-Bottom Inserts (DPGN-V) | | | S
Steel | | Cast
Iron | | | leat-R
Super | | | | | lened
eel | | | | Dimei
(inc | | | |---|---|------------|-------------|--------------|----------|---------|-----------------|-----------|----------|-----------|-----------|--------------|-------|---------------------------------|-------|---------------|-------|-------| | Shape: | Part Number | M | | K | | | | S | | | l | Н | | Part Number | | (| | | | 55° V-Bottom | ANSI | 009-5M | GSN100 | XSYTIN-1 | 009-5W | WG-300 | 009-5M | MG-700 | XSYTIN-1 | WG-300 | 009-5M | XSYTIN-1 | GEM-8 | ISO | I.C. | L | T | R | | | DPGN-442V | • | | | • | • | • | | | • | • | * | | DPGN-442V | 0.500 | 1.010 | 0.250 | 0.031 | | | DPGN-443V | • | | | • | • | • | | | • | • | * | | DPGN-443V | 0.500 | 0.973 | 0.250 | 0.047 | CERAMIC CLASSIFICATION: Whisker Ceramic | Phase-Toughened Silicon Nitride Alumina TiC | | First Choic | e 🔷 | Second C | hoice • | Alte | rnative 🗸 | ▲ Int | errupted/ | Milling + | ٠ | G | rade descriptions — pages GP 05 | | | | | See pages ATI 22-23 for information on edge preps. For availability and any application concerns, please contact Greenleaf Technical Service. GP # **Pulley and Poly Grooving Inserts** When ordering or requesting quotations, you should provide a part print and a sketch with dimensions as indicated in the following format: | Insert Style | В | E° | L | |----------------|----------------|----|---| | R ₁ | R ₂ | T | Z | * Recommended — other specifications available upon request. A (B E ## **Grooving, Profiling and Cut-Off Toolholders** The Greenleaf tooling system for grooving, profiling, and cut-off provides every specific application with unsurpassed support to ensure the greatest tool life and highest material-removal rates with both carbide and ceramic inserts. All the tools in this system are designed to use Greenleaf carbide or ceramic inserts interchangeably for maximum versatility. Toolholders are offered with both milled-nest and replaceable-nest designs to provide further options for your tooling requirements. Using the most rigid holder that fits the application will make the process more reliable and repeatable, reducing the likelihood of irregular wear. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ## **Pictorial Index** ## V-Bottom Round Toolholders ## CRDPN-VS Replaceable Nest Shallow D.O.C. page: GP 24 #### CRDPN-V Replaceable Nest Deep D.O.C. page: GP 24 #### CRDPN-VMS Milled Nest Shallow D.O.C. page: GP 25 #### CRDPN-VM Milled Nest Deep D.O.C. page: GP 25 #### O.D. G/P Toolholder Replaceable Nest Shallow D.O.C. page: GP 26 ## O.D. G/P Toolholder Replaceable Nest Deep D.O.C. page: GP 26 # V-Bottom Round Toolholders continued ## O.D. G/P Toolholder Milled Nest Shallow D.O.C. page: GP 27 #### O.D. G/P Toolholder Milled Nest Deep D.O.C. page: GP 27 #### CRGPR-V CRGPL-V 45° Replaceable Nest *page: GP 28* #### CRGPR-VM CRGPL-VM 45° Milled Nest *page: GP 28* ## **Single-Ended Groovers** ## Deep D.O.C. page: GP 29-30 Shallow D.O.C. page: GP 31-32 45° G/P Toolholder 90° G/P Toolholder page: GP 34-35 ## 35° and 55° V-Bottom CDJOR-V CDJOL-V Double Ended 55° Diamond page: GP 36 CDPON-V Double Ended 55° Diamond page: GP 36 CVJOR-V CVJOL-V Double Ended 35° Diamond page: GP 37 CVVON-V Double Ended 35° Diamond **page: GP 37** VJOR-V VJOL-V Single Ended 35° Diamond page: GP 38 VVON-V Single Ended 35° Diamond page: GP 38 # Grooving, Profiling, and Cut-Off Bars Cut-Off Grooving Bar page: GP 39 Cut-Off Grooving Support Blade For Single-Ended, V-Bottom Inserts **page: GP 40** Profiling Bar Round V-Bottom Insert Milled Nest page: GP 41 #### Profiling Support Blade Round V-Bottom Insert Milled Nest *page: GP 42* ## Profiling Support Blade Round V-Bottom Insert Replaceable Nest *page: GP 43* # Grooving, Profiling, and Cut-Off Bars continued Shank Options For Bolt-On Support Blades page: GP 44 ## Profiling Bar Double Ended 55° Diamond page: GP 45 ## Profiling Bar Double Ended 35° Diamond page: GP 45 ## Profiling Bar Single Ended 35° Diamond page: GP 46 GP ## **CRDPN-VS Toolholder** Round V-Bottom Insert / Replaceable Nest / Shallow D.O.C. (D) Series | | Gage | D.O.C. | Dime | ensions (inc | :hes) | | Standar | d Components | | *Tune-Up Kit | |-------------|------------|--------|-------|--------------|-------|--------|-----------------------|---------------|-----------------------|--| | Part Number | Inserts | D | A | В | C | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | CRDPN-162VS | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 410631 | #3-48 x 3/8 B.H.C.S | 411910-250VRC | 1/4-20 x 3/4
B.H.C.S. | TK-00524 | | CRDPN-202VS | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 410631 | #3-48 x 3/8 B.H.C.S | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00524 | | CRDPN-242VS | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 410631 | #3-48 x 3/8 B.H.C.S | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00524 | | CRDPN-163VS | ** RPGN-3V | 0.562 | 1.000 | 1.000 | 6.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-203VS | ** RPGN-3V | 0.562 | 1.250 | 1.250 | 6.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-243VS | ** RPGN-3V | 0.562 | 1.500 | 1.500 | 8.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-164VS | ** RPGN-4V | 0.750 | 1.000 | 1.000 | 6.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | CRDPN-204VS | ** RPGN-4V | 0.750 | 1.250 | 1.250 | 6.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | CRDPN-244VS | ** RPGN-4V | 0.750 | 1.500 | 1.500 | 8.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | NOTE: See page GP 14 for ceramic and carbide inserts. ## CRDPN-V Toolholder Round V-Bottom Insert / Replaceable Nest / Deep D.O.C. (D) Series | | Gage | D.O.C. | Dime | nsions (inc | hes) | | Standar | d Components | | *Tune-Up Kit | |-------------|------------|--------|-------|-------------|-------|--------|-----------------------|---------------|-----------------------|--| | Part Number | Inserts | D | A | В | C | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | CRDPN-162V | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00524 | | CRDPN-202V | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00524 | | CRDPN-242V | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00524 | | CRDPN-163V | ** RPGN-3V | 1.125 | 1.000 | 1.000 | 6.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-203V | ** RPGN-3V | 1.125 | 1.250 | 1.250 | 6.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-243V | ** RPGN-3V | 1.125 | 1.500 | 1.500 | 8.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | CRDPN-164V | ** RPGN-4V | 1.500 | 1.000 | 1.000 | 6.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | CRDPN-204V | ** RPGN-4V | 1.500 | 1.250 | 1.250 | 6.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | CRDPN-244V | ** RPGN-4V | 1.500 | 1.500 | 1.500 | 8.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | NOTE: See page GP 14 for ceramic and carbide inserts. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} RCGN can be used in place of RPGN. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} RCGN can be used in place of RPGN. ## **CRDPN-VMS Toolholder** Round V-Bottom Insert / Milled Nest / Shallow D.O.C. (D) Series | | Gage | D.0.C. | Dime | ensions (inc | :hes) | Standard C | omponents | *Tune-Up Kit | Opt. Component | |--------------|------------|--------|-------|--------------|-------|---------------|-----------------------|--|----------------| | Part Number | Inserts | D | A | В | C | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | CRDPN-162VMS | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-202VMS | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-242VMS | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-163VMS | ** RPGN-3V | 0.562 | 1.000 | 1.000 | 6.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-203VMS | ** RPGN-3V | 0.562 | 1.250 | 1.250 | 6.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-243VMS | ** RPGN-3V | 0.562 | 1.500 | 1.500 | 8.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-164VMS | ** RPGN-4V | 0.750 | 1.000 | 1.000 | 6.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRDPN-204VMS | ** RPGN-4V | 0.750 | 1.250 | 1.250 | 6.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRDPN-244VMS | ** RPGN-4V | 0.750 | 1.500 | 1.500 | 8.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. ## **CRDPN-VM Toolholder** Round V-Bottom Insert / Milled Nest / Deep D.O.C. (D) Series | | Gage | D.O.C. | Dime | nsions (inc | :hes) | Standard C | omponents | *Tune-Up Kit | Opt. Component | |-------------|------------|--------|-------|-------------|-------|---------------|-----------------------|--|----------------| | Part Number | Inserts | D | A | В | C | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | CRDPN-162VM | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-202VM | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-242VM | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 411910-250VRC | 1/4-20 x 3/4 B.H.C.S. | TK-00803 | PT-542T | | CRDPN-163VM | ** RPGN-3V | 1.125 | 1.000 | 1.000 | 6.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-203VM | ** RPGN-3V | 1.125 | 1.250 | 1.250 | 6.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-243VM | ** RPGN-3V | 1.125 | 1.500 | 1.500 | 8.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRDPN-164VM | ** RPGN-4V | 1.500 | 1.000 | 1.000 | 6.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRDPN-204VM | ** RPGN-4V | 1.500 | 1.250 | 1.250 | 6.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRDPN-244VM | ** RPGN-4V | 1.500 | 1.500 | 1.500 | 8.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} RCGN can be used in place of RPGN. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{**} RCGN can be used in place of RPGN. ## O.D. Grooving/Profiling Toolholder Round V-Bottom Insert / Replaceable Nest / Shallow D.O.C. (D) Series --- | Part N | umber | Gage | D.O.C. | D | imension | s (inches | 5) | | Stand | ard Components | | *Tune-Up Kit | |-------------|-------------|------------|--------|----------------|----------|-----------|-------|--------|-----------------------|----------------|-----------------------|--| | Right | Left | Inserts | D | Α [†] | В | С | F | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | 415419-2VRS | _ | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 415420-2VRS | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | 410631 | #3-48 x 3/8 B.H.C.S. | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 415421-2VRS | _ | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 415422-2VRS | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | 410631 | #3-48 x 3/8 B.H.C.S. | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 415423-2VRS | _ | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 415424-2VRS | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 415427-3VRS | 415428-3VRS | ** RPGN-3V | 0.562 | 1.000 | 1.000 | 6.000 | 1.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 415429-3VRS | 415430-3VRS | ** RPGN-3V | 0.562 | 1.250 | 1.250 | 6.000 | 1.250 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 415431-3VRS | 415432-3VRS | ** RPGN-3V | 0.562 | 1.500 | 1.500 | 8.000 | 1.500 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 415435-4VRS | 415436-4VRS | ** RPGN-4V | 0.750 | 1.000 | 1.000 | 6.000 | 1.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | 415437-4VRS | 415438-4VRS | ** RPGN-4V | 0.750 | 1.250 | 1.250 | 6.000 | 1.250 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | 415439-4VRS | 415440-4VRS | ** RPGN-4V | 0.750 | 1.500 | 1.500 | 8.000 | 1.500 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | NOTE: See page GP 14 for ceramic and carbide inserts. - "A" indicates width of shank available for clamping, (not necessarily overall shank width). - * Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## O.D. Grooving/Profiling Toolholder Round V-Bottom Insert / Replaceable Nest / Deep D.O.C. (D) Series | Part Nu | umber | Gage | D.O.C. | D | imension | s (inche | s) | | Stand | ard Components | | *Tune-Up Kit | |-------------|-------------|------------|--------|------------|----------|----------|-------|--------|-----------------------|----------------
-----------------------|--| | Right | Left | Inserts | D | A † | В | C | F | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | 411149-2VRS | _ | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | 410631 | #3-48 x 3/8 B.H.C.S | 411905-250VRC. | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 411150-2VRS | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 411151-2VRS | - | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 411956-2VRS | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 411957-2VRS | - | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00590 | | - | 411958-2VRS | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | 410631 | #3-48 x 3/8 B.H.C.S. | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00591 | | 411157-3VRS | 411158-3VRS | ** RPGN-3V | 1.125 | 1.000 | 1.000 | 6.000 | 1.000 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 411159-3VRS | 411160-3VRS | ** RPGN-3V | 1.125 | 1.250 | 1.250 | 6.000 | 1.250 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 411161-3VRS | 411162-3VRS | ** RPGN-3V | 1.125 | 1.500 | 1.500 | 8.000 | 1.500 | 413970 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00525 | | 411165-4VRS | 411166-4VRS | ** RPGN-4V | 1.500 | 1.000 | 1.000 | 6.000 | 1.000 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | 411167-4VRS | 411168-4VRS | ** RPGN-4V | 1.500 | 1.250 | 1.250 | 6.000 | 1.250 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | | 411169-4VRS | 411170-4VRS | ** RPGN-4V | 1.500 | 1.500 | 1.500 | 8.000 | 1.500 | 414007 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00526 | NOTE: See page GP 14 for ceramic and carbide inserts. - † "A" indicates width of shank available for clamping, (not necessarily overall shank width). - * Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. - ** RCGN can be used in place of RPGN. ^{**} RCGN can be used in place of RPGN. # **O.D. Grooving/Profiling Toolholder**Round V-Bottom Insert / Milled Nest / Shallow D.O.C. (D) Series Right-Hand Toolholder Shown | Part No | umber | Gage | D.0.C. | D | imensior | s (inches | 5) | Standard C | omponents | *Tune-Up Kit | Opt. Component | |--------------|--------------|------------|--------|----------------|----------|-----------|-------|---------------|-----------------------|--|----------------| | Right | Left | Inserts | D | A [†] | В | С | F | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | 421450-2VMRS | - | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421451-2VMRS | ** RPGN-2V | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421452-2VMRS | - | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421453-2VMRS | ** RPGN-2V | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421454-2VMRS | - | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421455-2VMRS | ** RPGN-2V | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421458-3VMRS | 421459-3VMRS | ** RPGN-3V | 0.562 | 1.000 | 1.000 | 6.000 | 1.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421460-3VMRS | 421461-3VMRS | ** RPGN-3V | 0.562 | 1.250 | 1.250 | 6.000 | 1.250 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421462-3VMRS | 421463-3VMRS | ** RPGN-3V | 0.562 | 1.500 | 1.500 | 8.000 | 1.500 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421466-4VMRS | 421467-4VMRS | ** RPGN-4V | 0.750 | 1.000 | 1.000 | 6.000 | 1.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | 421468-4VMRS | 421469-4VMRS | ** RPGN-4V | 0.750 | 1.250 | 1.250 | 6.000 | 1.250 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | 421470-4VMRS | 421471-4VMRS | ** RPGN-4V | 0.750 | 1.500 | 1.500 | 8.000 | 1.500 | 308136 | 1/4-20 x 3/4 S.H.C.S | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. - "A" indicates width of shank available for clamping, (not necessarily overall shank width). - Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. - ** RCGN can be used in place of RPGN. # O.D. Grooving/Profiling Toolholder Round V-Bottom Insert / Milled Nest / Deep D.O.C. (D) Series | Part Nu | umber | Gage | D.O.C. | D | imension | s (inches | 5) | Standard C | omponents | *Tune-Up Kit | Opt. Component | |--------------|--------------|------------|--------|------------|----------|-----------|-------|---------------|-----------------------|--|----------------| | Right | Left | Inserts | D | A † | В | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | 421498-2VMRS | - | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421499-2VMRS | ** RPGN-2V | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421500-2VMRS | - | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421501-2VMRS | ** RPGN-2V | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421502-2VMRS | - | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | 411905-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00765 | PT-542T | | - | 421503-2VMRS | ** RPGN-2V | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | 411906-250VRC | 1/4-20 x 1 S.H.C.S. | TK-00799 | PT-542T | | 421504-3VMRS | 421505-3VMRS | ** RPGN-3V | 1.125 | 1.000 | 1.000 | 6.000 | 1.000 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421506-3VMRS | 421507-3VMRS | ** RPGN-3V | 1.125 | 1.250 | 1.250 | 6.000 | 1.250 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421508-3VMRS | 421509-3VMRS | ** RPGN-3V | 1.125 | 1.500 | 1.500 | 8.000 | 1.500 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | 421510-4VMRS | 421511-4VMRS | ** RPGN-4V | 1.500 | 1.000 | 1.000 | 6.000 | 1.000 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | 421512-4VMRS | 421513-4VMRS | ** RPGN-4V | 1.500 | 1.250 | 1.250 | 6.000 | 1.250 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | 421514-4VMRS | 421515-4VMRS | ** RPGN-4V | 1.500 | 1.500 | 1.500 | 8.000 | 1.500 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. - † "A" indicates width of shank available for clamping, (not necessarily overall shank width). - Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. - ** RCGN can be used in place of RPGN. ## CRGPR-V/CRGPL-V 45° Grooving/Profiling Toolholder Round V-Bottom Insert; Replaceable Nest Right-Hand Toolholder Shown | Part No | umber | Gage | D.O.C. | Di | imension | s (inches | 5) | | Stand | ard Components | | *Tune-Up Kit | |------------|------------|------------|--------|----------------|----------|-----------|-------|--------|-----------------------|----------------|-----------------------|--| | Right | Left | Inserts | D | A [†] | В | C | F | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | CRGPR-162V | _ | ** RPGN-2V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 411108 | #3-48 x 3/8 B.H.C.S. | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00530 | | - | CRGPL-162V | ** RPGN-2V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 411108 | #3-48 x 3/8 B.H.C.S. | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00527 | | CRGPR-202V | _ | ** RPGN-2V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 411108 | #3-48 x 3/8 B.H.C.S. | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00530 | | - | CRGPL-202V | ** RPGN-2V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 411108 | #3-48 x 3/8 B.H.C.S. | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00527 | | CRGPR-242V | _ | ** RPGN-2V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 411108 | #3-48 x 3/8 B.H.C.S. | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00530 | | - | CRGPL-242V | ** RPGN-2V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 411108 | #3-48 x 3/8 B.H.C.S. | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00527 | | CRGPR-163V | CRGPL-163V | ** RPGN-3V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 414009 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00528 | | CRGPR-203V | CRGPL-203V | ** RPGN-3V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 414009 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00528 | | CRGPR-243V | CRGPL-243V | ** RPGN-3V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 414009 | #6-32 x 1/2 B.H.C.S. | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00528 | | CRGPR-164V | CRGPL-164V | ** RPGN-4V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 414008 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00529 | | CRGPR-204V | CRGPL-204V | ** RPGN-4V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 414008 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20 x 5/8 S.H.C.S. | TK-00529 | | CRGPR-244V | CRGPL-244V | ** RPGN-4V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 414008 | #10-32 x 5/8 B.H.C.S. | 308136 | 1/4-20
x 5/8 S.H.C.S. | TK-00529 | NOTE: See page GP 14 for ceramic and carbide inserts. - † "A" indicates width of shank available for clamping, (not necessarily overall shank width). - ${}^*\ \textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ - ** RCGN can be used in place of RPGN. ## CRGPR-VM/CRGPL-VM 45° Grooving/Profiling Toolholder Round V-Bottom Insert; Milled Nest Right-Hand Toolholder Shown | Part Number | | Gage | D.O.C. | Dimensions (inches) | | | | Standard Components | | *Tune-Up Kit | Optional | |-------------|-------------|------------|--------|---------------------|-------|-------|-------|---------------------|-----------------------|--|---------------------------| | Right | Left | Inserts | D | A [†] | В | С | F | Clamp | Clamp Screw | Includes all
Standard
Components | Component
Insert Screw | | CRGPR-162VM | _ | ** RPGN-2V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00795 | PT-542T | | - | CRGPL-162VM | ** RPGN-2V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00836 | PT-542T | | CRGPR-202VM | _ | ** RPGN-2V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00795 | PT-542T | | - | CRGPL-202VM | ** RPGN-2V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00836 | PT-542T | | CRGPR-242VM | _ | ** RPGN-2V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 412131-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00795 | PT-542T | | - | CRGPL-242VM | ** RPGN-2V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 412132-250GC | 1/4-20 x 3/4 S.H.C.S. | TK-00836 | PT-542T | | CRGPR-163VM | CRGPL-163VM | ** RPGN-3V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRGPR-203VM | CRGPL-203VM | ** RPGN-3V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRGPR-243VM | CRGPL-243VM | ** RPGN-3V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 308063 | #10-32 x 1/2 S.H.C.S. | TK-00764 | PT-545T | | CRGPR-164VM | CRGPL-164VM | ** RPGN-4V | 0.250 | 1.000 | 1.000 | 6.000 | 1.250 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRGPR-204VM | CRGPL-204VM | ** RPGN-4V | 0.250 | 1.250 | 1.250 | 6.000 | 1.500 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | | CRGPR-244VM | CRGPL-244VM | ** RPGN-4V | 0.250 | 1.500 | 1.500 | 8.000 | 1.750 | 308136 | 1/4-20 x 3/4 S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. - † "A" indicates width of shank available for clamping, (not necessarily overall shank width). - * Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. - ** RCGN can be used in place of RPGN. ## Grooving/Profiling/Cut-Off Toolholder Deep D.O.C. Series Right-Hand Toolholder Shown | Part Ni | umber | | D.O.C. | D | imensio | ns (inche | s) | Standar | d Components | *Tune-Up Kit | Optional Co | mponents | |---------------|---------------|-----------------|--------|-------|---------|-----------|-------|------------|--------------|--|----------------------------|--------------| | Right | Left | Groove
Width | D | Α† | В | C | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 427635-094VGS | _ | 0.094 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 427651-094GC | TK-00881 | | 429524-094GC | | - | 427636-094VGS | 0.094 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 427652-094GC | TK-00882 | COC 4004 0 | 429525-094GC | | 427637-094VGS | - | 0.094 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-4094 | 427651-094GC | TK-00881 | COS-4094-0
COS-4094-4L | 429524-094GC | | - | 427638-094VGS | 0.094 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4094 | 427652-094GC | TK-00882 | COS-4094-4L
COS-4094-4R | 429525-094GC | | 427639-094VGS | - | 0.094 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 427651-094GC | TK-00881 | CU3-4094-4K | 429524-094GC | | - | 427640-094VGS | 0.094 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 427652-094GC | TK-00882 | | 429525-094GC | | 411173-125VGS | - | 0.125 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411966-125GC | TK-00592 | | 429512-125GC | | - | 411961-125VGS | 0.125 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | WGC-4125 | 411967-125GC | TK-00596 | GTS-4125 | 429513-125GC | | 411250-125VGS | - | 0.125 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4125 | 411966-125GC | TK-00592 | COS-4125-0 | 429512-125GC | | - | 411251-125VGS | 0.125 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-4125-1 | 411967-125GC | TK-00596 | COS-4125-4L | 429513-125GC | | 411962-125VGS | - | 0.125 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | GTS-4125-2 | 411966-125GC | TK-00592 | COS-4125-4R | 429512-125GC | | - | 411963-125VGS | 0.125 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411967-125GC | TK-00596 | | 429513-125GC | | 411964-156VGS | - | 0.156 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411968-156GC | TK-00580 | | 436373-156GC | | - | 411965-156VGS | 0.156 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411969-156GC | TK-00597 | | 436374-156GC | | 411256-156VGS | _ | 0.156 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-4156 | 411968-156GC | TK-00580 | GTS-4156 | 436373-156GC | | - | 411257-156VGS | 0.156 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4156 | 411969-156GC | TK-00597 | d13-4130 | 436374-156GC | | 411258-156VGS | - | 0.156 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411968-156GC | TK-00580 | | 436373-156GC | | - | 411259-156VGS | 0.156 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411969-156GC | TK-00597 | | 436374-156GC | | 411970-187VGS | - | 0.187 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411977-187GC | TK-00581 | | 429518-187GC | | - | 411178-187VGS | 0.187 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | WGC-4187 | 411978-187GC | TK-00593 | GTS-4187 | 429519-187GC | | 411262-187VGS | - | 0.187 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4187 | 411977-187GC | TK-00581 | COS-4187-0 | 429518-187GC | | - | 411263-187VGS | 0.187 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-4187-1 | 411978-187GC | TK-00593 | COS-4187-4L | 429519-187GC | | 411971-187VGS | - | 0.187 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | GTS-4187-2 | 411977-187GC | TK-00581 | COS-4187-4R | 429518-187GC | | - | 411972-187VGS | 0.187 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411978-187GC | TK-00593 | | 429519-187GC | | 411179-218VGS | - | 0.218 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | | 411979-218GC | TK-00582 | - | - | | - | 411180-218VGS | 0.218 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | | 411130-218GC | TK-00583 | _ | - | | 411268-218VGS | - | 0.218 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6218 | 411979-218GC | TK-00582 | _ | - | | - | 411269-218VGS | 0.218 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6218 | 411130-218GC | TK-00583 | _ | - | | 411270-218VGS | - | 0.218 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | | 411979-218GC | TK-00582 | _ | - | | - | 411271-218VGS | 0.218 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | | 411130-218GC | TK-00583 | _ | _ | [&]quot;A" indicates width of shank available for clamping, (not necessarily overall shank width). Continued on next page. All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## Grooving/Profiling/Cut-Off Toolholder ____ Right-Hand Toolholder Shown Deep D.O.C. Series (Continued) | _ | | | | | | | | | | | Hana Iooinolaer S | | |---------------|---------------|-----------------|--------|-------|----------|-----------|-------|------------|---------------|--|-------------------|----------| | Part Nu | ımber | | D.O.C. | D | imensior | ns (inche | s) | Standaı | rd Components | *Tune-Up Kit | Optional Co | mponents | | Right | Left | Groove
Width | D | Α† | В | c | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 411973-250VGS | - | 0.250 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | WGC-6250 | 411980-250GC | TK-00617 | - | - | | - | 411974-250VGS | 0.250 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | WG-6250 | 411981-250GC | TK-00598 | _ | - | | 411975-250VGS | _ | 0.250 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-6250 | 411980-250GC | TK-00617 | - | _ | | - | 411275-250VGS | 0.250 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-6250-1 | 411981-250GC | TK-00598 | - | - | | 411276-250VGS | - | 0.250 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | GTS-6250-2 | 411980-250GC | TK-00617 | - | _ | | - | 411277-250VGS | 0.250 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | | 411981-250GC | TK-00598 | - | - | | 411183-281VGS | - | 0.281 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | | 411133-281GC | TK-00584 | - | _ | | - | 411184-281VGS | 0.281 | 1.125 | 1.000 | 1.000 | 6.000 | 1.500 | | 411134-281GC | TK-00585 | - | - | | 411280-281VGS | - | 0.281 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6281 | 411133-281GC | TK-00584 | _ | _ | | - | 411281-281VGS | 0.281 | 1.125 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6281 | 411134-281GC | TK-00585 | - | - | | 411282-281VGS | _ | 0.281 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | | 411133-281GC | TK-00584 | - | _ | | - | 411283-281VGS | 0.281 | 1.125 | 1.500 | 1.500 | 8.000 | 2.000 | | 411134-281GC | TK-00585 | - | - | | 411982-312VGS | - | 0.312 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411985-312GC | TK-00586 | - | - | | - | 411186-312VGS | 0.312 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411136-312GC | TK-00587 | _ | _ | | 411286-312VGS | - | 0.312 | 1.500 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8312 | 411985-312GC | TK-00586 | - | _ | | - | 411287-312VGS | 0.312 | 1.500 |
1.250 | 1.250 | 6.000 | 1.750 | WG-8312 | 411136-312GC | TK-00587 | _ | _ | | 411288-312VGS | - | 0.312 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411985-312GC | TK-00586 | - | _ | | ı | 411289-312VGS | 0.312 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411136-312GC | TK-00587 | _ | _ | | 411187-344VGS | _ | 0.344 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411137-344GC | TK-00594 | - | _ | | - | 411188-344VGS | 0.344 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411138-344GC | TK-00588 | _ | _ | | 411292-344VGS | _ | 0.344 | 1.500 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8344 | 411137-344GC | TK-00594 | _ | _ | | - | 411293-344VGS | 0.344 | 1.500 | 1.250 | 1.250 | 6.000 | 1.750 | WG-8344 | 411138-344GC | TK-00588 | _ | _ | | 411294-344VGS | - | 0.344 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411137-344GC | TK-00594 | _ | _ | | - | 411295-344VGS | 0.344 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411138-344GC | TK-00588 | - | - | | 411189-375VGS | _ | 0.375 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411986-375GC | TK-00595 | - | - | | - | 411190-375VGS | 0.375 | 1.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411987-375GC | TK-00589 | _ | - | | 411983-375VGS | - | 0.375 | 1.500 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8375 | 411986-375GC | TK-00595 | _ | _ | | - | 411984-375VGS | 0.375 | 1.500 | 1.250 | 1.250 | 6.000 | 1.750 | WG-8375 | 411987-375GC | TK-00589 | _ | - | | 411300-375VGS | _ | 0.375 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411986-375GC | TK-00595 | _ | - | | - | 411301-375VGS | 0.375 | 1.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411987-375GC | TK-00589 | | - | [&]quot;A" indicates width of shank available for clamping, (not necessarily overall shank width). COS is Greenleaf's cut-off system insert. Page GP 08. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. # **Grooving/Profiling/Cut-Off Toolholder**Shallow D.O.C. Series Right-Hand Toolholder Shown | Part N | umber | | D.O.C. | D | imensio | ns (inche | s) | Standa | rd Components | *Tune-Up Kit | Optional Co | mponents | |---------------|---------------|-----------------|--------|-------|---------|-----------|-------|------------|---------------|--|-------------|--------------| | Right | Left | Groove
Width | D | A† | В | С | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 427641-094VGS | _ | 0.094 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 427651-094GC | TK-00881 | | 429524-094GC | | - | 427642-094VGS | 0.094 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 427652-094GC | TK-00882 | COS-4094-0 | 429525-094GC | | 427643-094VGS | - | 0.094 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4094 | 427651-094GC | TK-00881 | COS-4094-4L | 429524-094GC | | - | 427644-094VGS | 0.094 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-4094 | 427652-094GC | TK-00882 | COS-4094-4R | 429525-094GC | | 427645-094VGS | _ | 0.094 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 427651-094GC | TK-00881 | | 429524-094GC | | - | 427646-094VGS | 0.094 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 427652-094GC | TK-00882 | | 429525-094GC | | 415316-125VGS | - | 0.125 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 411966-125GC | TK-00592 | | 429512-125GC | | _ | 415317-125VGS | 0.125 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | GTS-4125-1 | 411967-125GC | TK-00596 | GTS-4125 | 429513-125GC | | 415318-125VGS | - | 0.125 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-4125-2 | 411966-125GC | TK-00592 | COS-4125-0 | 429512-125GC | | - | 415319-125VGS | 0.125 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4125 | 411967-125GC | TK-00592 | COS-4125-4L | 429513-125GC | | 415320-125VGS | - | 0.125 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | WGC-4125 | 411966-125GC | TK-00596 | COS-4125-4R | 429512-125GC | | - | 415321-125VGS | 0.125 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 411967-125GC | TK-00596 | | 429513-125GC | | 415324-156VGS | - | 0.156 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 411968-156GC | TK-00580 | | 436373-156GC | | - | 415325-156VGS | 0.156 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 411969-156GC | TK-00597 | | 436374-156GC | | 415326-156VGS | _ | 0.156 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4156 | 411968-156GC | TK-00580 | GTS-4156 | 436373-156GC | | - | 415327-156VGS | 0.156 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-4156 | 411969-156GC | TK-00597 | | 436374-156GC | | 415328-156VGS | _ | 0.156 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 411968-156GC | TK-00580 | | 436373-156GC | | - | 415329-156VGS | 0.156 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 411969-156GC | TK-00597 | | 436374-156GC | | 415332-187VGS | _ | 0.187 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | | 411977-187GC | TK-00581 | | 429518-187GC | | - | 415333-187VGS | 0.187 | 0.375 | 1.000 | 1.000 | 6.000 | 1.500 | GTS-4187-1 | 411978-187GC | TK-00593 | GTS-4187 | 429519-187GC | | 415334-187VGS | _ | 0.187 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-4187-2 | 411977-187GC | TK-00581 | COS-4187-0 | 429519-187GC | | - | 415335-187VGS | 0.187 | 0.375 | 1.250 | 1.250 | 6.000 | 1.750 | WG-4187 | 411978-187GC | TK-00593 | COS-4187-4L | 429518-187GC | | 415336-187VGS | _ | 0.187 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | WGC-4187 | 411977-187GC | TK-00581 | COS-4187-4R | 429519-187GC | | - | 415337-187VGS | 0.187 | 0.375 | 1.500 | 1.500 | 8.000 | 2.000 | | 411978-187GC | TK-00593 | | 429518-187GC | | 415340-218VGS | - | 0.218 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | | 411979-218GC | TK-00582 | - | _ | | - | 415341-218VGS | 0.218 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | | 411130-218GC | TK-00583 | _ | _ | | 415342-218VGS | - | 0.218 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6218 | 411979-218GC | TK-00582 | _ | _ | | - | 415343-218VGS | 0.218 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6218 | 411130-218GC | TK-00583 | _ | _ | | 415344-218VGS | _ | 0.218 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | | 411979-218GC | TK-00582 | _ | _ | | _ | 415345-218VGS | 0.218 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | | 411130-218GC | TK-00583 | _ | _ | [&]quot;A" indicates width of shank available for clamping, (not necessarily overall shank width). Continued on next page. All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. $^{{\}it COS is Greenleaf's cut-off system insert. Page GP~08.}$ WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## **Grooving/Profiling/Cut-Off Toolholder**Shallow D.O.C. Series (Continued) Right-Hand Toolholder Shown | Part N | umber | | D.O.C. | D | imensio | ns (inche | s) | Standa | rd Components | *Tune-Up Kit | Optional Co | mponents | |---------------|---------------|-----------------|--------|-------|---------|-----------|-------|------------|---------------|--|-------------|----------| | Right | Left | Groove
Width | D | A† | В | c | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 415348-250VGS | - | 0.25 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | GTS-6250 | 411980-250GC | TK-00617 | - | _ | | - | 415349-250VGS | 0.25 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | GTS-6250-1 | 411981-250GC | TK-00598 | _ | _ | | 415350-250VGS | _ | 0.25 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-6250-2 | 411980-250GC | TK-00617 | - | _ | | - | 415351-250VGS | 0.25 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6250 | 411981-250GC | TK-00598 | _ | - | | 415352-250VGS | - | 0.25 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | WGC-6250 | 411980-250GC | TK-00617 | - | _ | | - | 415353-250VGS | 0.25 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | | 411981-250GC | TK-00598 | - | - | | 415356-281VGS | - | 0.281 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | | 411133-281GC | TK-00584 | - | - | | - | 415357-281VGS | 0.281 | 0.562 | 1.000 | 1.000 | 6.000 | 1.500 | | 411134-281GC | TK-00585 | - | - | | 415358-281VGS | _ | 0.281 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6281 | 411133-281GC | TK-00584 | _ | _ | | - | 415359-281VGS | 0.281 | 0.562 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6281 | 411134-281GC | TK-00585 | - | - | | 415360-281VGS | _ | 0.281 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | | 411133-281GC | TK-00584 | _ | _ | | - | 415361-281VGS | 0.281 | 0.562 | 1.500 | 1.500 | 8.000 | 2.000 | | 411134-281GC | TK-00585 | - | _ | | 415364-312VGS | _ | 0.312 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411985-312GC | TK-00586 | - | - | | - | 415365-312VGS | 0.312 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411136-312GC | TK-00587 | _ | _ | | 415366-312VGS | _ | 0.312 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-8312 | 411985-312GC | TK-00586 | _ | _ | | - | 415367-312VGS | 0.312 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8312 | 411136-312GC | TK-00587 | _ | _ | | 415368-312VGS | _ | 0.312 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411985-312GC | TK-00586 | _ | _ | | - | 415369-312VGS | 0.312 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411136-312GC | TK-00587 | - | - | | 415372-344VGS | _ | 0.344 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411137-344GC | TK-00594 | - | _ | | _ | 415373-344VGS | 0.344 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411138-344GC | TK-00588 | _ | _ | | 415374-344VGS | _ | 0.344 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WG-8344 | 411137-344GC | TK-00594 | - | _ | | - | 415375-344VGS | 0.344 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8344 | 411138-344GC | TK-00588 | - | - | | 415376-344VGS | _ | 0.344 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411137-344GC | TK-00594 | _ | _ | | - | 415377-344VGS | 0.344 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411138-344GC | TK-00588 | - | _ | |
415380-375VGS | _ | 0.375 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411986-375GC | TK-00595 | _ | _ | | - | 415381-375VGS | 0.375 | 0.750 | 1.000 | 1.000 | 6.000 | 1.500 | | 411987-375GC | TK-00589 | _ | _ | | 415382-375VGS | _ | 0.375 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-8375 | 411986-375GC | TK-00595 | - | - | | - | 415383-375VGS | 0.375 | 0.750 | 1.250 | 1.250 | 6.000 | 1.750 | | 411987-375GC | TK-00589 | _ | - | | 415384-375VGS | - | 0.375 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411986-375GC | TK-00595 | _ | _ | | _ | 415385-375VGS | 0.375 | 0.750 | 1.500 | 1.500 | 8.000 | 2.000 | | 411987-375GC | TK-00589 | _ | _ | [&]quot;A" indicates width of shank available for clamping, (not necessarily overall shank width). ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## 45° Grooving/Profiling Toolholder Right-Hand Toolholder Shown | Part No | umber | Gage | D.O.C. | D | imensio | ns (inche | s) | Std Component | *Tune-Up Kit | Optional Con | nponents | |--------------|--------------|------------|--------|-------|---------|-----------|-------|---------------|--|--------------|-----------| | Right | Left | Insert | D | A | В | C | F | Clamp | Includes all
Standard
Components | Insert | Clamp | | | | GTS-4125-1 | 0.313 | 1.000 | 1.000 | 6.020 | 1.332 | | | | | | | | GTS-4125-2 | 0.313 | 1.000 | 1.000 | 6.013 | 1.325 | | | | | | | | WG-4125 | 0.313 | 1.000 | 1.000 | 6.000 | 1.312 | | | | | | 415293-45VGS | 415294-45VGS | WG-4125-1 | 0.313 | 1.000 | 1.000 | 6.020 | 1.332 | 415305-GC | TK-00618 | GTS-4125 | 429514-GC | | | | WG-4125-2 | 0.313 | 1.000 | 1.000 | 6.013 | 1.325 | 415306-GC | TK-00709 | | 429515-GC | | | | WG-4156 | 0.313 | 1.000 | 1.000 | 6.005 | 1.317 | | | | | | | | WG-4156-1 | 0.313 | 1.000 | 1.000 | 6.031 | 1.343 | | | | | | | | WG-4156-2 | 0.313 | 1.000 | 1.000 | 6.024 | 1.336 | | | | | | | | GTS-4125-1 | 0.313 | 1.250 | 1.250 | 6.020 | 1.582 | | | | | | | | GTS-4125-2 | 0.313 | 1.250 | 1.250 | 6.013 | 1.575 | | | | | | | | WG-4125 | 0.313 | 1.250 | 1.250 | 6.000 | 1.562 | | | | | | 415295-45VGS | 415296-45VGS | WG-4125-1 | 0.313 | 1.250 | 1.250 | 6.020 | 1.582 | 415305-GC | TK-00618 | GTS-4125 | 429514-GC | | | | WG-4125-2 | 0.313 | 1.250 | 1.250 | 6.013 | 1.575 | 415306-GC | TK-00709 | | 429515-GC | | | | WG-4156 | 0.313 | 1.250 | 1.250 | 6.005 | 1.567 | | | | | | | | WG-4156-1 | 0.313 | 1.250 | 1.250 | 6.031 | 1.593 | | | | | | | | WG-4156-2 | 0.313 | 1.250 | 1.250 | 6.024 | 1.586 | | | | | | | | GTS-4125-1 | 0.313 | 1.500 | 1.500 | 8.020 | 1.832 | | | | | | | | GTS-4125-2 | 0.313 | 1.500 | 1.500 | 8.013 | 1.825 | | | | | | | | WG-4125 | 0.313 | 1.500 | 1.500 | 8.000 | 1.812 | | | | | | 415297-45VGS | 415298-45VGS | WG-4125-1 | 0.313 | 1.500 | 1.500 | 8.020 | 1.832 | 415305-GC | TK-00618 | GTS-4125 | 429514-GC | | | | WG-4125-2 | 0.313 | 1.500 | 1.500 | 8.013 | 1.825 | 415306-GC | TK-00709 | | 429515-GC | | | | WG-4156 | 0.313 | 1.500 | 1.500 | 8.005 | 1.817 | | | | | | | | WG-4156-1 | 0.313 | 1.500 | 1.500 | 8.031 | 1.843 | | | | | | | | WG-4156-2 | 0.313 | 1.500 | 1.500 | 8.024 | 1.836 | | | | | | | | GTS-4187-1 | 0.313 | 1.000 | 1.000 | 6.033 | 1.345 | | | | | | | | GTS-4187-2 | 0.313 | 1.000 | 1.000 | 6.026 | 1.338 | 415307-GC | TK-00619 | GTS-4187 | 429520-GC | | 415299-45VGS | 415300-45VGS | WG-4187 | 0.313 | 1.000 | 1.000 | 6.000 | 1.312 | 415308-GC | TK-00708 | | 429521-GC | | | | WG-4187-1 | 0.313 | 1.000 | 1.000 | 6.033 | 1.345 | | | | | | | | WG-4187-2 | 0.313 | 1.000 | 1.000 | 6.026 | 1.338 | | | | | | | | GTS-4187-1 | 0.313 | 1.250 | 1.250 | 6.033 | 1.595 | | | | | | | | GTS-4187-2 | 0.313 | 1.250 | 1.250 | 6.026 | 1.588 | 415307-GC | TK-00619 | GTS-4187 | 429520-GC | | 415301-45VGS | 415302-45VGS | WG-4187 | 0.313 | 1.250 | 1.250 | 6.000 | 1.562 | 415308-GC | TK-00708 | | 429521-GC | | | | WG-4187-1 | 0.313 | 1.250 | 1.250 | 6.033 | 1.595 | | | | | | | | WG-4187-2 | 0.313 | 1.250 | 1.250 | 6.026 | 1.588 | | | | | | | | GTS-4187-1 | 0.313 | 1.500 | 1.500 | 8.033 | 1.845 | | | | | | | | GTS-4187-2 | 0.313 | 1.500 | 1.500 | 8.026 | 1.838 | 415307-GC | TK-00619 | GTS-4187 | 429520-GC | | 415303-45VGS | 415304-45VGS | WG-4187 | 0.313 | 1.500 | 1.500 | 8.000 | 1.812 | 415308-GC | TK-00708 | | 429521-GC | | | | WG-4187-1 | 0.313 | 1.500 | 1.500 | 8.033 | 1.845 | | | | | | | | WG-4187-2 | 0.313 | 1.500 | 1.500 | 8.026 | 1.838 | | | | | ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## 90° Grooving/Profiling Toolholder Right-Hand Toolholder Shown | Part N | umber | | D.O.C. | D | imensio | ns (inche | s) | Standard C | omponents | *Tune-Up Kit | Optional Co | omponents | |---------------|---------------|-----------------|--------|-------|---------|-----------|-------|------------|--------------|--|-------------|--------------| | Right | Left | Groove
Width | D | A | В | C | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 411693-125VGS | - | 0.125 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | | 411765-125GC | TK-00599 | | 429516-125GC | | _ | 411694-125VGS | 0.125 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | GTS-4125-1 | 411766-125GC | TK-00600 | GTS-4125 | 429517-125GC | | 411695-125VGS | - | 0.125 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | GTS-4125-2 | 411765-125GC | TK-00599 | COS-4125-0 | 429516-125GC | | _ | 411696-125VGS | 0.125 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | WG-4125 | 411766-125GC | TK-00600 | COS-4125-4R | 429517-125GC | | 411697-125VGS | _ | 0.125 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | WGC-4125 | 411765-125GC | TK-00599 | COS-4125-4L | 429516-125GC | | - | 411698-125VGS | 0.125 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | | 411766-125GC | TK-00600 | | 429517-125GC | | 411701-156VGS | - | 0.156 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | | 411767-156GC | TK-00601 | - | - | | - | 411702-156VGS | 0.156 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | | 411768-156GC | TK-00602 | - | - | | 411703-156VGS | _ | 0.156 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | WG-4156 | 411767-156GC | TK-00601 | - | - | | - | 411704-156VGS | 0.156 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | WGC-4156 | 411768-156GC | TK-00602 | - | _ | | 411705-156VGS | _ | 0.156 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | | 411767-156GC | TK-00601 | - | _ | | - | 411706-156VGS | 0.156 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | | 411768-156GC | TK-00602 | - | _ | | 411709-187VGS | - | 0.187 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | | 411769-187GC | TK-00603 | | 429522-187GC | | _ | 411710-187VGS | 0.187 | 0.375 | 1.000 | 1.000 | 6.000 | 1.375 | GTS-4187-1 | 411770-187GC | TK-00604 | GTS-4187 | 429523-187GC | | 411711-187VGS | _ | 0.187 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | GTS-4187-2 | 411769-187GC | TK-00603 | COS-4187-0 | 429522-187GC | | _ | 411712-187VGS | 0.187 | 0.375 | 1.250 | 1.250 | 6.000 | 1.625 | WG-4187 | 411770-187GC | TK-00604 | COS-4187-4R | 429523-187GC | | 411713-187VGS | _ | 0.187 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | WGC-4187 | 411769-187GC | TK-00603 | COS-4187-4L | 429522-187GC | | _ | 411714-187VGS | 0.187 | 0.375 | 1.500 | 1.500 | 8.000 | 1.875 | | 411770-187GC | TK-00604 | | 429523-187GC | | 411717-218VGS | - | 0.218 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411771-218GC | TK-00605 | - | - | | - | 411718-218VGS | 0.218 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411772-218GC | TK-00606 | - | - | | 411719-218VGS | - | 0.218 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6218 | 411771-218GC | TK-00605 | - | - | | - | 411720-218VGS | 0.218 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6218 | 411772-218GC | TK-00606 | - | _ | | 411721-218VGS | _ | 0.218 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411771-218GC | TK-00605 | - | _ | | - | 411722-218VGS | 0.218 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411772-218GC | TK-00606 | - | _ | | 411725-250VGS | - | 0.250 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | CTC (250 | 411773-250GC | TK-00608 | - | - | | _ | 411726-250VGS | 0.250 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | GTS-6250 | 411774-250GC | TK-00607 | _ | _ | | 411727-250VGS | _ | 0.250 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-6250-1 | 411773-250GC | TK-00608 | _ | _ | | _ | 411728-250VGS | 0.250 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | GTS-6250-2 | 411774-250GC | TK-00607 | - | _ | | 411729-250VGS | _ | 0.250 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | WG-6250 | 411773-250GC | TK-00608 | - | _ | | _ | 411730-250VGS | 0.250 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | WGC-6250 | 411774-250GC | TK-00607 | - | _ | ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. Continued on next page. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## **90° Grooving/Profiling Toolholder** (Continued) Right-Hand Toolholder Shown | D (N | | | D 0 C | - | | <i>(</i> ' 1 | ` | C: 1 10 | | XT 11 1/1 | 0 11 16 | | |---------------|---------------|-----------------|--------|-------|----------|--------------|-------|------------|--------------|--|-------------|-----------| | Part N | umber | | D.0.C. | ע | imensior | rs (inche | 5) |
Standard C | omponents | *Tune-Up Kit | Optional Co | omponents | | Right | Left | Groove
Width | D | A | В | С | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 411733-281VGS | - | 0.281 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411775-281GC | TK-00609 | _ | - | | - | 411734-281VGS | 0.281 | 0.500 | 1.000 | 1.000 | 6.000 | 1.500 | | 411776-281GC | TK-00610 | _ | _ | | 411735-281VGS | - | 0.281 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | WG-6281 | 411775-281GC | TK-00609 | _ | _ | | - | 411736-281VGS | 0.281 | 0.500 | 1.250 | 1.250 | 6.000 | 1.750 | WGC-6281 | 411776-281GC | TK-00610 | _ | _ | | 411737-281VGS | - | 0.281 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411775-281GC | TK-00609 | _ | _ | | - | 411738-281VGS | 0.281 | 0.500 | 1.500 | 1.500 | 8.000 | 2.000 | | 411776-281GC | TK-00610 | _ | _ | | 411743-312VGS | - | 0.312 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | | 411777-312GC | TK-00611 | - | - | | - | 411744-312VGS | 0.312 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | WG-8312 | 411778-312GC | TK-00612 | _ | _ | | 411745-312VGS | - | 0.312 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | WGC-8312 | 411777-312GC | TK-00611 | _ | _ | | - | 411746-312VGS | 0.312 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | | 411778-312GC | TK-00612 | - | - | | 411751-344VGS | - | 0.344 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | | 411779-344GC | TK-00613 | - | - | | - | 411752-344VGS | 0.344 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | WG-8344 | 411780-344GC | TK-00614 | _ | _ | | 411753-344VGS | - | 0.344 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | WGC-8344 | 411779-344GC | TK-00613 | _ | _ | | _ | 411754-344VGS | 0.344 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | | 411780-344GC | TK-00614 | - | _ | | 411759-375VGS | - | 0.375 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | | 411781-375GC | TK-00615 | - | - | | - | 411760-375VGS | 0.375 | 0.625 | 1.250 | 1.250 | 6.000 | 1.875 | WG-8375 | 411782-375GC | TK-00616 | - | - | | 411761-375VGS | _ | 0.375 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | WGC-8375 | 411781-375GC | TK-00615 | - | _ | | - | 411762-375VGS | 0.375 | 0.625 | 1.500 | 1.500 | 8.000 | 2.125 | | 411782-375GC | TK-00616 | - | - | ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## CDJOR-V/CDJOL-V ### Double Ended / 55° Diamond Insert Right-Hand Toolholder Shown | Part No | umber | Gage | Di | imensior | s (inche | 5) | | s | *Tune-Up Kit | | | |------------|------------|-----------|-------|----------|----------|-------|---------------|-------------------|--------------|------------------|--| | Right | Left | Inserts | A | В | С | F | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | CDJOR-164V | CDJOL-164V | DPGN-443V | 1.000 | 1.000 | 6.000 | 1.250 | 418101 | #6-32x3/8S.H.C.S. | 418100 | 1/4-20x1S.H.C.S. | TK-00754 | | CDJOR-204V | CDJOL-204V | DPGN-443V | 1.250 | 1.250 | 6.000 | 1.500 | 418101 | #6-32x3/8S.H.C.S. | 418100 | 1/4-20x1S.H.C.S. | TK-00754 | | CDJOR-244V | CDJOL-244V | DPGN-443V | 1.500 | 1.500 | 8.000 | 2.000 | 418101 | #6-32x3/8S.H.C.S. | 418100 | 1/4-20x1S.H.C.S. | TK-00754 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## CDPON-V Double Ended / 55° Diamond Insert Neutral Toolholder Shown | | Gage | Diı | mensions (i | nches) | | | *Tune-Up Kit | | | |-------------|-----------|-------|-------------|--------|---------------|----------------------|--------------|---------------------|--| | Part Number | Inserts | A | В | С | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | CDPON-164V | DPGN-443V | 1.000 | 1.000 | 6.000 | 418101 | #6-32 x 3/8 S.H.C.S. | 418100 | 1/4-20 x 1 S.H.C.S. | TK-00754 | | CDPON-204V | DPGN-443V | 1.250 | 1.250 | 6.000 | 418101 | #6-32 x 3/8 S.H.C.S. | 418100 | 1/4-20 x 1 S.H.C.S. | TK-00754 | | CDPON-244V | DPGN-443V | 1.500 | 1.500 | 8.000 | 418101 | #6-32 x 3/8 S.H.C.S. | 418100 | 1/4-20 x 1 S.H.C.S. | TK-00754 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## CVJOR-V/CVJOL-V | | Part Number Gage Dimensions (inches) Standard Components *Tune-Up Ki | | | | | | | | | | | | | |---------------|--|-------------|-------|----------|----------|-------|---------------|-------------------|--------------|--------------------|--|--|--| | Part No | umber | Gage | D | imensior | s (inche | s) | | S | *Tune-Up Kit | | | | | | Right | Left | Inserts | A | A B C | | F | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | | | CVJOR-122.5VC | CVJOL-122.5VC | VCGN-2.532V | 0.750 | 0.750 | 5.000 | 1.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | CVJOR-162.5V | CVJ0L-162.5V | VCGN-2.532V | 1.000 | 1.000 | 6.000 | 1.250 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | CVJOR-202.5V | CVJ0L-202.5V | VCGN-2.532V | 1.250 | 1.250 | 6.000 | 1.500 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | CVJOR-242.5V | CVJ0L-242.5V | VCGN-2.532V | 1.500 | 1.500 | 8.000 | 2.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## CVVON-V Double Ended / 35° Diamond Insert | Gage Dimensions (inches) Standard Components *Tune-l | | | | | | | | | | | | | | |--|-------------|-------|-------------|--------|---------------|-------------------|--------------|--------------------|--|--|--|--|--| | | Gage | Diı | mensions (i | nches) | | | *Tune-Up Kit | | | | | | | | Part Number | Inserts | A | В | C | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | | | | | CVVON-122.5VC | VCGN-2.532V | 0.750 | 0.750 | 5.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | | | CVVON-162.5V | VCGN-2.532V | 1.000 | 1.000 | 6.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | | | CVVON-202.5V | VCGN-2.532V | 1.250 | 1.250 | 6.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S. | TK-00756 | | | | | | CVVON-242.5V | VCGN-2.532V | 1.500 | 1.500 | 8.000 | 418525 | #4-40x1/4S.H.C.S. | 418524 | #10-32x3/4S.H.C.S | TK-00756 | | | | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## VJOR-V/VJOL-V ## Single Ended / 35° Diamond Insert Right-Hand Toolholder Shown | Part No | umber | Gage | D | imensior | s (inche | 5) | | Standard | Components | *Tune-Up Kit | |-----------|-----------|-------------|-------|----------|----------|-------|-------|----------|-----------------------|--| | Right | Left | | | A B C | | E | F | Clamp | Clamp Screw | Includes all
Standard
Components | | VJOR-164V | VJ0L-164V | VPG-33.543V | 1.000 | 1.000 | 6.000 | 1.688 | 1.250 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | VJOR-204V | VJOL-204V | VPG-33.543V | 1.250 | 1.250 | 6.000 | 1.688 | 1.500 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | VJOR-244V | VJOL-244V | VPG-33.543V | 1.500 | 1.500 | 8.000 | 1.688 | 2.000 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## **VVON-V** Single Ended / 35° Diamond Insert Neutral Toolholder Shown | | Gage | Dimensions (inches) | | | | Standard (| *Tune-Up Kit | | |-------------|-------------|---------------------|-------|-------|-------|------------|-----------------------|--| | Part Number | Inserts | A | В | С | E | Clamp | Clamp Screw | Includes all
Standard
Components | | VVON-164V | VPG-33.543V | 1.000 | 1.000 | 6.000 | 1.719 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | VVON-204V | VPG-33.543V | 1.250 | 1.250 | 6.000 | 1.719 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | VVON-244V | VPG-33.543V | 1.500 | 1.500 | 8.000 | 1.719 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## **Cut-Off Grooving Bar** Right-Hand Grooving Bar Shown | Part N | umber | | D.O.C. | | Dim | ensions (| (inches) | Standar | d Components | *Tune-Up Kit | Optional Co | omponents | |---------------|---------------|-----------------|--------|--------------|-------|-----------|----------|-----------------------------------|--------------|--|----------------------------|--------------| | Right | Left | Groove
Width | D | Min.
Bore | A | С | F | Insert | Clamp | Includes all
Standard
Components | Insert | Clamp | | 512074-125VGS | _ | 0.125 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 | GTS-4125-1 | 411765-125GC | TK-00599 | GTS-4125 | 429516-125GC | | - | 512075-125VGS | 0.125 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 | GTS-4125-2 | 411766-125GC | TK-00600 | COS-4125-0 | 429517-125GC | | | | | | | | | | WG-4125
WGC-4125 | | | COS-4125-4R
COS-4125-4L | | | 512086-156VGS | - | 0.156 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 | WG-4156 | 411767-156GC | TK-00601 | - | _ | | - | 512087-156VGS | 0.156 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 | WGC-4156 | 411768-156GC | TK-00602 | - | _ | | 512098-187VGS | _ | 0.187 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 |
GTS-4187-1 | 411769-187GC | TK-00603 | GTS-4187 | 429522-187GC | | - | 512099-187VGS | 0.187 | 0.375 | 2.500 | 2.000 | 16.000 | 1.375 | GTS-4187-2 | 411770-187GC | TK-00604 | COS-4187-0 | 429523-187GC | | | | | | | | | | WG-4187 | | | COS-4187-4R | | | | | | | | | | | WGC-4187 | | | COS-4187-4L | | | 512106-218VGS | _ | 0.218 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | WG-6218 | 411771-218GC | TK-00605 | - | _ | | _ | 512107-218VGS | 0.218 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | WGC-6218 | 411772-218GC | TK-00606 | _ | - | | 512116-250VGS | _ | 0.250 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | GTS-6250 | 411773-250GC | TK-00608 | - | _ | | - | 512117-250VGS | 0.250 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | GTS-6250-1 | 411774-250GC | TK-00607 | - | - | | | | | | | | | | GTS-6250-2
WG-6250
WGC-6250 | | | | | | 512126-281VGS | - | 0.281 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | WG-6281 | 411775-281GC | TK-00609 | _ | _ | | _ | 512127-281VGS | 0.281 | 0.500 | 2.750 | 2.000 | 16.000 | 1.500 | WGC-6281 | 411776-281GC | TK-00610 | - | _ | | 512132-312VGS | - | 0.312 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WG-8312 | 411777-312GC | TK-00611 | - | _ | | _ | 512133-312VGS | 0.312 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WGC-8312 | 411778-312GC | TK-00612 | _ | - | | 512138-344VGS | - | 0.344 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WG-8344 | 411779-344GC | TK-00613 | - | _ | | _ | 512139-344VGS | 0.344 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WGC-8344 | 411780-344GC | TK-00614 | - | _ | | 512144-375VGS | _ | 0.375 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WG-8375 | 411781-375GC | TK-00615 | - | - | | _ | 512145-375VGS | 0.375 | 0.625 | 3.000 | 2.000 | 16.000 | 1.625 | WGC-8375 | 411782-375GC | TK-00616 | - | _ | ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS clamp screw. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. # **Cut-Off Grooving Support Blade**For Single-Ended V-Bottom Inserts | D M. | b.a.u | | DAG | Dimonsio | Chand-ud 4 | Cammananta | *Tune Un Vit | Ontional Comm | | |----------------|---------------|-----------------|--------|------------------------|------------|--------------|--|---------------|--------------| | Part N | umber | | D.O.C. | Dimensions
(inches) | Standard | Components | *Tune-Up Kit | Optional Comp | onents | | Right | Left | Groove
Width | D | F | Insert | Clamp | Includes all
Std Components
and *Clamp Screw | Insert | Clamp | | 511309-125VGB | - | 0.125 | 0.750 | 2.250 | GTS-4125-1 | 411967-125GC | TK-00596 | GTS-4125 | 429513-125GC | | - | 512228-125VGB | 0.125 | 0.750 | 2.250 | GTS-4125-2 | 411966-125GC | TK-00592 | COS-4125-0 | 429512-125GC | | | | | | | WG-4125 | | | COS-4125-4R | | | | | | | | WGC-4125 | | | COS-4125-4L | | | 511311-156VGB | - | 0.156 | 0.750 | 2.250 | WG-4156 | 411969-156GC | TK-00597 | _ | - | | - | 511312-156VGB | 0.156 | 0.750 | 2.250 | WGC-4156 | 411968-156GC | TK-00580 | _ | _ | | 511313-187VGB | - | 0.187 | 0.750 | 2.250 | GTS-4187-1 | 411978-187GC | TK-00593 | GTS-4187 | 429519-187GC | | - | 511314-187VGB | 0.187 | 0.750 | 2.250 | GTS-4187-2 | 411977-187GC | TK-00581 | COS-4187-0 | 429518-187GC | | | | | | | WG-4187 | | | COS-4187-4R | | | | | | | | WGC-4187 | | | COS-4187-4L | | | 511315-218VGB | - | 0.218 | 1.125 | 2.625 | WG-6218 | 411130-218GC | TK-00583 | _ | _ | | - | 512229-218VGB | 0.218 | 1.125 | 2.625 | WGC-6218 | 411979-218GC | TK-00582 | _ | _ | | 512230-250VGB | _ | 0.250 | 1.125 | 2.625 | GTS-6250 | 411981-250GC | TK-00598 | _ | _ | | _ | 511318-250VGB | 0.250 | 1.125 | 2.625 | GTS-6250-1 | 411980-250GC | TK-00617 | _ | _ | | | | | | | GTS-6250-2 | | | | | | | | | | | WG-6250 | | | | | | | | | | | WGC-6250 | | | | | | 511319-281VGB | - | 0.281 | 1.125 | 2.625 | WG-6281 | 411134-281GC | TK-00585 | - | _ | | _ | 511320-281VGB | 0.281 | 1.125 | 2.625 | WGC-6281 | 411133-281GC | TK-00584 | | _ | | 511321-312-VGB | - | 0.312 | 1.500 | 3.000 | WG-8312 | 411136-312GC | TK-00587 | - | - | | _ | 511322-312VGB | 0.312 | 1.500 | 3.000 | WGC-8312 | 411985-312GC | TK-00586 | _ | _ | | 511323-344VGB | - | 0.344 | 1.500 | 3.000 | WG-8344 | 411138-344GC | TK-00588 | | | | _ | 511324-344VGB | 0.344 | 1.500 | 3.000 | WGC-8344 | 411137-344GC | TK-00594 | | _ | | 511325-375VGB | - | 0.375 | 1.500 | 3.000 | WG-8375 | 411987-375GC | TK-00589 | _ | - | | _ | 511326-375VGB | 0.375 | 1.500 | 3.000 | WGC-8375 | 411986-375GC | TK-00595 | _ | - | NOTE: See page GP 44 for available shank options ^{*} All toolholders include standard clamp and 1/4-20 x 1 SHCS. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## **Profiling Bar**Round V-Bottom Insert / Milled Nest | Right-Hand Profiling Bar Sho | |------------------------------| |------------------------------| | Part N | umber | Gage - | 0pt 1 | Gage - O | pt 2 | D.O.C. | Dime | nsions (i | nches) | Standard Co | omponents | *Tune-Up Kit | Opt. Component | |--------------|--------------|---------|--------------|----------|--------------|--------|-------|-----------|--------|--------------|--------------------|--|----------------| | Right | Left | Insert | Min.
Bore | Insert | Min.
Bore | D | A | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | 519700-2VMRB | - | RPGN-2V | 1.500 | RCGN-2V | 3.500 | 3/8 | 1.000 | 12.00 | 0.875 | 412131-250GC | 1/4-20x3/4S.H.C.S. | TK-00795 | PT-542T | | _ | 519701-2VMRB | RPGN-2V | 1.500 | RCGN-2V | 3.500 | 3/8 | 1.000 | 12.00 | 0.875 | 412132-250GC | 1/4-20x3/4S.H.C.S. | TK-00836 | PT-542T | | 519702-2VMRB | _ | RPGN-2V | 1.750 | RCGN-2V | 3.500 | 3/8 | 1.250 | 13.75 | 1.000 | 412131-250GC | 1/4-20x1S.H.C.S. | TK-00798 | PT-542T | | - | 519703-2VMRB | RPGN-2V | 1.750 | RCGN-2V | 3.500 | 3/8 | 1.250 | 13.75 | 1.000 | 412132-250GC | 1/4-20x1S.H.C.S. | TK-00848 | PT-542T | | 519704-2VMRB | - | RPGN-2V | 2.000 | RCGN-2V | 3.500 | 3/8 | 1.500 | 13.75 | 1.125 | 412131-250GC | 1/4-20x1S.H.C.S. | TK-00798 | PT-542T | | - | 519705-2VMRB | RPGN-2V | 2.000 | RCGN-2V | 3.500 | 3/8 | 1.500 | 13.75 | 1.125 | 412132-250GC | 1/4-20x1S.H.C.S. | TK-00848 | PT-542T | | 519706-2VMRB | - | RPGN-2V | 2.500 | RCGN-2V | 3.500 | 3/8 | 2.000 | 16.00 | 1.375 | 412131-250GC | 1/4-20x1S.H.C.S. | TK-00798 | PT-542T | | - | 519707-2VMRB | RPGN-2V | 2.500 | RCGN-2V | 3.500 | 3/8 | 2.000 | 16.00 | 1.375 | 412132-250GC | 1/4-20x1S.H.C.S. | TK-00848 | PT-542T | | 519708-3VMRB | 519709-3VMRB | RPGN-3V | 2.250 | RCGN-3V | 4.500 | 1/2 | 1.250 | 13.75 | 1.125 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | 519710-3VMRB | 519711-3VMRB | RPGN-3V | 2.500 | RCGN-3V | 4.500 | 1/2 | 1.500 | 13.75 | 1.250 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | 519712-3VMRB | 519713-3VMRB | RPGN-3V | 2.750 | RCGN-3V | 4.500 | 1/2 | 2.000 | 16.00 | 1.500 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | 519714-4VMRB | 519715-4VMRB | RPGN-4V | 2.250 | RCGN-4V | 4.500 | 5/8 | 1.250 | 13.75 | 1.250 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | | 519716-4VMRB | 519717-4VMRB | RPGN-4V | 2.500 | RCGN-4V | 4.500 | 5/8 | 1.500 | 13.75 | 1.375 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | | 519718-4VMRB | 519719-4VMRB | RPGN-4V | 2.750 | RCGN-4V | 4.500 | 5/8 | 2.000 | 16.00 | 1.625 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the profiling bar. ## **Profiling Support Blade**Round V-Bottom Insert / Milled Nest | Part N | lumber | Gage | D.O.C. | Dimensions | Standard C | omponents | *Tune-Up Kit | Opt. Component | |--------------|--------------|-----------|--------|---------------|---------------|--------------------|--|----------------| | Right | Left | Insert | D | (inches)
F | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | 519740-2VMRB | - | **RPGN-2V | 0.750 | 2.375 | 411906-250VRC | 1/4-20x1S.H.C.S. | TK-00799 | PT-542T | | - | 519741-2VMRB | **RPGN-2V | 0.750 | 2.375 | 411905-250VRC | 1/4-20x1S.H.C.S. | TK-00765 | PT-542T | | 519742-3VMRB | - | **RPGN-3V | 1.125 | 2.750 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | - | 519743-3VMRB | **RPGN-3V | 1.125 | 2.750 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | 519744-4VMRB | - | **RPGN-4V | 1.500 | 3.125 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | | - | 519745-4VMRB | **RPGN-4V | 1.500 | 3.125 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: See page GP 44 for available shank options. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. ## Profiling Support Blade Round V-Bottom Insert / Replaceable Nest | Part N | umber | Gage | D.O.C. | Dimensions | | Standard | Components | | *Tune-Up Kit | |-------------|-------------|-----------|--------|---------------|--------|--------------------|---------------|--------------------|--| | Right | Left | Insert | D | (inches)
F | Nest | Nest Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | 512227-2VRB | - | **RPGN-2V | 0.750 | 2.375 | 411108 | #3-48x3/8B.H.C.S.
 411906-250VRC | 1/4-20x1S.H.C.S. | TK-00685 | | - | 511287-2VRB | **RPGN-2V | 0.750 | 2.375 | 411108 | #3-48x3/8B.H.C.S. | 411905-250VRC | 1/4-20x1S.H.C.S. | TK-00683 | | 511288-3VRB | - | **RPGN-3V | 1.125 | 2.750 | 414009 | #6-32x1/2B.H.C.S. | 308063 | #10-32x1/2S.H.C.S. | TK-00528 | | - | 511289-3VRB | **RPGN-3V | 1.125 | 2.750 | 414009 | #6-32x1/2B.H.C.S. | 308063 | #10-32x1/2S.H.C.S. | TK-00528 | | 511290-4VRB | - | **RPGN-4V | 1.500 | 3.125 | 414008 | #10-32x5/8B.H.C.S. | 308136 | 1/4-20x5/8S.H.C.S. | TK-00529 | | - | 511291-4VRB | **RPGN-4V | 1.500 | 3.125 | 414008 | #10-32x5/8B.H.C.S. | 308136 | 1/4-20x5/8S.H.C.S. | TK-00529 | NOTE: See page GP 14 for ceramic and carbide inserts. NOTE: See page GP 44 for available shank options. * Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. ^{**} RCGN can be used in place of RPGN. # **Shank Options**For Bolt-On Support Blades | Part Number | Dimensions
(inches) | |-------------|------------------------| | 511296 | 2.000 | | 511297 | 2.250 | | 511292 | 2.500 | | 511298 | 3.000 | ## **Profiling Bar**Double-Ended 55° Diamond #### Right-Hand Profiling Bar Shown | Part N | umber | Gage | | Dim | ensions (incl | hes) | | | *Tune-Up Kit | | | |-----------------|----------------|-----------|--------------|-------|---------------|-------|---------------|----------------------|--------------|---------------------|--| | Right | Left | Insert | Min.
Bore | A | C | F | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | 518560-32-5 5VR | 518561-32-55VL | DPGN-443V | 2-3/4 | 2.000 | 16.000 | 1.500 | 418101 | #6-32 x 3/8 S.H.C.S. | 418100 | 1/4-20 x 1 S.H.C.S. | TK-00754 | | 518562-40-55VR | 518563-40-55VL | DPGN-443V | 3-1/4 | 2.500 | 16.000 | 2.000 | 418101 | #6-32 x 3/8 S.H.C.S. | 418100 | 1/4-20 x 1 S.H.C.S. | TK-00754 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade profiling bar. ## **Profiling Bar**Double-Ended 35° Diamond Right-Hand Profiling Bar Shown | Part | Number | Gage | | Dim | ensions (inc | hes) | | | *Tune-Up Kit | | | |----------------|----------------|-------------|--------------|-------|--------------|-------|---------------|----------------------|--------------|-----------------------|--| | Right | Left | Insert | Min.
Bore | A | C | F | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | 518554-24-35VI | 518555-24-35VL | VCGN-2.532V | 2 | 1.500 | 14.000 | 1.000 | 418525 | #4-40 x 1/4 S.H.C.S. | 418524 | #10-32 x 3/4 S.H.C.S. | TK-00756 | | 518556-32-35VI | 518557-32-35VL | VCGN-2.532V | 2-3/4 | 2.000 | 16.000 | 1.500 | 418525 | #4-40 x 1/4 S.H.C.S. | 418524 | #10-32 x 3/4 S.H.C.S. | TK-00756 | | 518558-40-35VI | 518559-40-35VL | VCGN-2.532V | 3-1/4 | 2.500 | 16.000 | 2.000 | 418525 | #4-40 x 1/4 S.H.C.S. | 418524 | #10-32 x 3/4 S.H.C.S. | TK-00756 | NOTE: See page GP 18 for inserts $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade profiling bar.} \\$ # **Profiling Bar**Single-Ended 35° Diamond Right-Hand Profiling Bar Shown | Part N | umber | Gage | | Dim | ensions (incl | hes) | Standard C | omponents | *Tune-Up Kit | |---------------|---------------|-------------|--------------|-------|---------------|-------|------------|-----------------------|--| | Right | Left | Insert | Min.
Bore | A | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | | 511339-B244VR | 511340-B244VL | VPG-33.543V | 2 | 1.500 | 14.000 | 1.000 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | 511343-B324VR | 511344-B324VL | VPG-33.543V | 2-3/4 | 2.000 | 16.000 | 1.500 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | | 511347-B404VR | 511348-B404VL | VPG-33.543V | 3-1/4 | 2.500 | 16.000 | 2.000 | 3386 | #10-32 x 5/8 S.H.C.S. | TK-00578 | NOTE: See page GP 18 for inserts ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade profiling bar. ## Grooving, Profiling and Cut-Off Support Blades The Greenleaf tooling system for grooving, profiling, and cut-off is complemented by a support blade system that combines qualified shanks and support blades to expand the application range of each toolholder or bar. Greenleaf tools can be coupled with 248 support blades holding cut-off, V-bottom round profilers, and grooving inserts to meet your every need. Quick-change shanks such as CAPTO or KM, as well as straight shank holders and bars, are all part of this tooling system. Custom solutions for particular features not addressable with standard tools can be readily designed with your input and Greenleaf's extensive experience. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ## Support Blade Overview ## O.D. Grooving/Profiling Support Blade D D T F F 1/47 DM. INSERT HOLDER Round V-Bottom Insert Replaceable Nest | Part N | umber | Gage | D.O.C. | Dimensions | | Standard Components | | | | | |------------|------------|-----------|--------|---------------|---------------|---------------------|---------------|--------------------|--|--| | Right | Left | Insert | D | (inches)
F | Back-Up Plate | Plate Screw | Clamp | Clamp Screw | Includes all
Standard
Components | | | 411959-2VR | - | **RPGN-2V | 0.750 | 0.469 | 410631 | #3-48x3/8B.H.C.S. | 411905-250VRC | 1/4-20x1S.H.C.S. | TK-00590 | | | - | 411960-2VR | **RPGN-2V | 0.750 | 0.469 | 410631 | #3-48x3/8B.H.C.S. | 411906-250VRC | 1/4-20x1S.H.C.S. | TK-00591 | | | 411011-3VR | 411012-3VR | **RPGN-3V | 1.125 | 0.469 | 413970 | #6-32x1/2B.H.C.S. | 308063 | #10-32x1/2S.H.C.S. | TK-00525 | | | 411009-4VR | 411010-4VR | **RPGN-4V | 1.500 | 0.469 | 414007 | #10-32x5/8B.H.C.S. | 308136 | 1/4-20x5/8S.H.C.S. | TK-00526 | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. See page GP 14 for ceramic and carbide insert. ## O.D. Grooving/Profiling Support Blade Round V-Bottom Insert Milled Nest Right-Hand Support Blade Shown | Part N | umber | Gage | D.O.C. | Dimensions | | | *Tune-Up Kit | Optional Component | |-------------|-------------|-----------|--------|---------------|---------------|--------------------|--|--------------------| | Right | Left | Insert | D | (inches)
F | Clamp | Clamp Screw | Includes all
Standard
Components | Insert Screw | | 421534-2VMR | - | **RPGN-2V | 0.750 | 0.469 | 411905-250VRC | 1/4-20x1S.H.C.S. | TK-00765 | PT-542T | | - | 421535-2VMR | **RPGN-2V | 0.750 | 0.469 | 411906-250VRC | 1/4-20x1S.H.C.S. | TK-00799 | PT-542T | | 421536-3VMR | 421537-3VMR | **RPGN-3V | 1.125 | 0.469 | 308063 | #10-32x1/2S.H.C.S. | TK-00764 | PT-545T | | 421538-4VMR | 421539-4VMR | **RPGN-4V | 1.500 | 0.469 | 308136 | 1/4-20x3/4S.H.C.S. | TK-00763 | CO-5018 | st Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. See page GP 14 for ceramic and carbide insert. NOTE: Use carbide inserts RCGT and RPGT with optional insert screw for finishing. ^{**} RCGN can be used in place of RPGN. ^{**} RCGN can be used in place of RPGN. # O.D. Grooving/Profiling/ Cut-Off Support Blade Right Hand | Part Nu | ımber | | Dim | ensions (inc | hes) | Standard | d Components | *Tune-Up Kit | Optional Co | mponents | |----------------|--------------|-----------------|-------|--------------|-------|--|--------------|--|--|--------------| | Shallow Series | Deep Series | Groove
Width | Α | В | F | Insert | Clamp | Includes all
Std Components
and *Clamp Screw | Insert | Clamp | | 427647-094VG | | 0.094 | 0.380 | - | 0.469 | WG-4094 | 427651-094GC | TK-00881 | COS-4094-0 | 429524-094GC | | | 427648-094VG | 0.094 | - | 0.750 | 0.469 | WGC-4094 | 427651-094GC | TK-00881 | COS-4094-4L
COS-4094-4R | 429524-094GC | | 421109-125VG | | 0.125 | 0.380 | - | 0.469 | GTS-4125-1 | 411966-125GC | TK-00592 | GTS-4125 | 429512-125GC | | | 411988-125VG | 0.125 | - | 0.750 | 0.469 | GTS-4125-2
WG-4125
WGC-4125 | 411966-125GC | TK-00592 | COS-4125-0
COS-4125-4R
COS-4125-4L | 429512-125GC | | 421110-156VG | | 0.156 | 0.380 | - | 0.469 | WG-4156 | | TK-00580 | _ | - | | | 411066-156VG | 0.156 | - | 0.750 | 0.469 | WGC-4156 | 411968-156GC | TK-00580 | | - | | 421111-187VG | | 0.187 | 0.380 | - | 0.469 | GTS-4187-1 | 411977-187GC | TK-00581 | GTS-4187 | 429518-187GC | | | 411068-187VG | 0.187 | - | 0.750 | 0.469 | GTS-4187-2
WG-4187
WGC-4187 | 411977-187GC | TK-00581 | COS-4187-0
COS-4187-4R
COS-4187-4L | 429518-187GC | | 421112-218VG | | 0.218 | 0.560 | _ | 0.469 | WG-6218 | 411979-218GC | TK-00582 | _ | _ | | | 411081-218VG | 0.218 | 1 | 1.130 | 0.469 | WGC-6218 | 411979-218GC | TK-00582 | | - | | 421113-250VG | | 0.250 | 0.560 | - | 0.469 | WG-6250 | 411980-250GC | TK-00617 | _ | - | | | 411992-250VG | 0.250 | - | 1.130 | 0.469 | WGC-6250
GTS-6250
GTS-6250-1
GTS-6250-2 | 411980-250GC | TK-00617 | | - | | 421114-281VG | | 0.281 | 0.560 | - | 0.469 | WG-6281 | 411133-281GC | TK-00584 | - | - | | | 411085-281VG | 0.281 | - | 1.130 | 0.469 | WGC-6281 | 411133-281GC | TK-00584 | | - | | 421115-312VG | | 0.312 | 0.750 | - | 0.469 | WG-8312 |
411985-312GC | TK-00586 | _ | _ | | | 411087-312VG | 0.312 | - | 1.500 | 0.469 | WGC-8312 | 411985-312GC | TK-00586 | | - | | 421116-344VG | | 0.344 | 0.750 | - | 0.469 | WG-8344 | 411137-344GC | TK-00594 | - | - | | | 411089-344VG | 0.344 | - | 1.500 | 0.469 | WGC-8344 | 411137-344GC | TK-00594 | | - | | 421117-375VG | | 0.375 | 0.750 | _ | 0.469 | WG-8375 | 411986-375GC | TK-00595 | | - | | 411994-375VG | | 0.375 | - | 1.500 | 0.469 | WGC-8375 | 411986-375GC | TK-00595 | | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. All support blades include Standard Clamp and 1/4-20 x 1 SHCS. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. See pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. See pages GP 12 and GP 13. # O.D. Grooving/Profiling/ Cut-Off Support Blade Left Hand | Part N | umber | | Dim | ensions (inc | hes) | Standard | d Components | *Tune-Up Kit | Optional Cor | nponents | |----------------|--------------|-----------------|-------|--------------|-------|--|--------------|--|--|--------------| | Shallow Series | Deep Series | Groove
Width | A | В | F | Insert | Clamp | Includes all
Std Components
and *Clamp Screw | Insert | Clamp | | 427649-094VG | | 0.094 | 0.380 | - | 0.469 | WG-4094 | 427652-094GC | TK-00882 | COS-4094-0 | 429525-094GC | | | 427650-094VG | 0.094 | - | 0.750 | 0.469 | WGC-4094 | 427652-094GC | TK-00882 | COS-4094-4L
COS-4094-4R | 429525-094GC | | 421100-125VG | | 0.125 | 0.380 | - | 0.469 | GTS-4125-1 | 411967-125GC | TK-00596 | GTS-4125 | 429513-125GC | | | 411989-125VG | 0.125 | - | 0.750 | 0.469 | GTS-4125-2
WG-4125
WGC-4125 | 411967-125GC | TK-00596 | COS-4125-0
COS-4125-4R
COS-4125-4L | 429513-125GC | | 421101-156VG | | 0.156 | 0.380 | - | 0.469 | WG-4156 | 411969-156GC | TK-00597 | _ | - | | | 411990-156VG | 0.156 | - | 0.750 | 0.469 | WGC-4156 | 411969-156GC | TK-00597 | | | | 421102-187VG | | 0.187 | 0.380 | - | 0.469 | GTS-4187-1 | 411978-187GC | TK-00593 | GTS-4187 | 429519-187GC | | | 411991-187VG | 0.187 | - | 0.750 | 0.469 | GTS-4187-2
WG-4187
WGC-4187 | 411978-187GC | TK-00593 | COS-4187-0
COS-4187-4R
COS-4187-4L | 429519-187GC | | 421103-218VG | | 0.218 | 0.560 | _ | 0.469 | WG-6218 | 411130-218GC | TK-00583 | - | _ | | | 411082-218VG | 0.218 | ı | 1.130 | 0.469 | WGC-6218 | 411130-218GC | TK-00583 | | - | | 421104-250VG | | 0.250 | 0.560 | _ | 0.469 | WG-6250 | 411981-250GC | TK-00598 | - | _ | | | 411993-250VG | 0.250 | - | 1.130 | 0.469 | WGC-6250
GTS-6250
GTS-6250-1
GTS-6250-2 | 411981-250GC | TK-00598 | | - | | 421105-281VG | | 0.281 | 0.560 | _ | 0.469 | WG-6281 | 411134-281GC | TK-00585 | _ | _ | | | 411086-281VG | 0.281 | - | 1.130 | 0.469 | WGC-6281 | 411134-281GC | TK-00585 | | - | | 421106-312VG | | 0.312 | 0.750 | | 0.469 | WG-8312 | 411136-312GC | TK-00587 | _ | _ | | | 411088-312VG | 0.312 | _ | 1.500 | 0.469 | WGC-8312 | 411136-312GC | TK-00587 | | - | | 421107-344VG | | 0.344 | 0.750 | - | 0.469 | WG-8344 | 411138-344GC | TK-00588 | _ | _ | | | 411090-344VG | 0.344 | - | 1.500 | 0.469 | WGC-8344 | 411138-344GC | TK-00588 | | - | | 421108-375VG | | 0.375 | 0.750 | _ | 0.469 | WG-8375 | 411987-375GC | TK-00589 | _ | _ | | | 411122-375VG | 0.375 | - | 1.500 | 0.469 | WGC-8375 | 411987-375GC | TK-00589 | | - | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. All support blades include Standard Clamp and 1/4-20 x 1 SHCS. GTS is Greenleaf's groove/turn system insert with chip control. Page GP 09. COS is Greenleaf's cut-off system insert. Page GP 08. WG is Greenleaf flat-top groover with an 11° nose clearance. Pages GP 10 and GP 11. WGC is Greenleaf's flat-top groover with a 6° nose clearance. Pages GP 12 and GP 13. ## Face Grooving Support Blade A | Part N | umber | Gage | | Dime | ensions (in | ches) | | Standard (| Components | *Tune-Up Kit | |------------------|------------------|---------|------------------------------|-------|-------------|-------|-------|--------------|---------------------|--| | Shallow Series | Deep Series | Insert | Outside
Diameter
Range | A | В | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | | 421218-1255-030 | 421243-125L-030 | WG-4125 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421219-1255-035 | 421244-125L-035 | WG-4125 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421220-125S-0425 | 421245-125L-0425 | WG-4125 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421221-125S-055 | 421246-125L-055 | WG-4125 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421222-125S-075 | 421247-125L-075 | WG-4125 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421223-125S-125 | 421248-125L-125 | WG-4125 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.031 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421224-1875-030 | 421249-187L-030 | WG-4187 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421225-1875-035 | 421250-187L-035 | WG-4187 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421226-187S-0425 | 421251-187L-0425 | WG-4187 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421227-187S-055 | 421252-187L-055 | WG-4187 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421228-1875-075 | 421253-187L-075 | WG-4187 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421229-187S-125 | 421254-187L-125 | WG-4187 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.031 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421230-250S-030 | 421255-250L-030 | WG-6250 | 3.00 / 4.25 | 0.560 | 1.000 | 1.125 | 0.031 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421231-2505-0425 | 421256-250L-0425 | WG-6250 | 4.25 / 6.00 | 0.560 | 1.000 | 1.125 | 0.031 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421232-250S-060 | 421257-250L-060 | WG-6250 | 6.00 / 8.50 | 0.560 | 1.000 | 1.125 | 0.031 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421233-250S-085 | 421258-250L-085 | WG-6250 | 8.50 / 15.50 | 0.560 | 1.000 | 1.125 | 0.031 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421234-250S-155 | 421259-250L-155 | WG-6250 | 15.50 / 40.00 | 0.560 | 1.000 | 1.125 | 0.031 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421235-3125-030 | 421260-312L-030 | WG-8312 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421236-3125-050 | 421261-312L-050 | WG-8312 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421237-312S-090 | 421262-312L-090 | WG-8312 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421238-312S-190 | 421263-312L-190 | WG-8312 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.031 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421239-375S-030 | 421264-375L-030 | WG-8375 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421240-375S-050 | 421265-375L-050 | WG-8375 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421241-375S-090 | 421266-375L-090 | WG-8375 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421242-3755-190 | 421267-375L-190 | WG-8375 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.031 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. See pages GP 10 and GP 11 for inserts. ## Face Grooving Support Blade B | D 4 N | | | | | | | | | Iana Shank Shown | | | | |------------------|------------------|---------|------------------------------|-------|------------|-------|-------|--------------|---------------------|--|--|--| | Part No | umber | Gage | | Dime | nsions (in | ches) | | Standard (| Components | *Tune-Up Kit | | | | Shallow Series | Deep Series | Insert | Outside
Diameter
Range | A | В | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | | | | 421118-125S-030 | 421143-125L-030 | WG-4125 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421119-125S-035 | 421144-125L-035 | WG-4125 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421120-125S-0425 | 421145-125L-0425 | WG-4125 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421121-125S-055 | 421146-125L-055 | WG-4125 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421122-1255-075 | 421147-125L-075 | WG-4125 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421123-125S-125 | 421148-125L-125 | WG-4125 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.469 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | | | 421124-1875-030 | 421149-187L-030 | WG-4187 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.469 |
421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421125-187S-035 | 421150-187L-035 | WG-4187 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.469 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421126-187S-0425 | 421151-187L-0425 | WG-4187 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421127-187S-055 | 421152-187L-055 | WG-4187 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421128-1875-075 | 421153-187L-075 | WG-4187 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421129-187S-125 | 421154-187L-125 | WG-4187 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.469 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | | | 421130-250S-030 | 421155-250L-030 | WG-6250 | 3.00 / 4.25 | 0.560 | 1.000 | 1.125 | 0.469 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | | | 421131-250S-0425 | 421156-250L-0425 | WG-6250 | 4.25 / 6.00 | 0.560 | 1.000 | 1.125 | 0.469 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | | | 421132-250S-060 | 421157-250L-060 | WG-6250 | 6.00 / 8.50 | 0.560 | 1.000 | 1.125 | 0.469 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | | | 421133-250S-085 | 421158-250L-085 | WG-6250 | 8.50 / 15.50 | 0.560 | 1.000 | 1.125 | 0.469 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | | | 421134-250S-155 | 421159-250L-155 | WG-6250 | 15.50 / 40.00 | 0.560 | 1.000 | 1.125 | 0.469 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | | | 421135-312S-030 | 421160-312L-030 | WG-8312 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | | | 421136-312S-050 | 421161-312L-050 | WG-8312 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | | | 421137-312S-090 | 421162-312L-090 | WG-8312 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | | | 421138-312S-190 | 421163-312L-190 | WG-8312 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.469 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | | | 421139-3755-030 | 421164-375L-030 | WG-8375 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | | | 421140-3755-050 | 421165-375L-050 | WG-8375 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | | | 421141-3755-090 | 421166-375L-090 | WG-8375 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | | | 421142-3755-190 | 421167-375L-190 | WG-8375 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.469 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. See pages GP 10 and GP 11 for inserts. ## Face Grooving Support Blade C | D (N | | | | D: | . / | 1 \ | LCTC 11u | na Snank Snown | ×T 11 1/1 | | |------------------|------------------|---------|------------------------------|-------|-------------|-------|----------|----------------|---------------------|--| | Part N | umber | Gage | | Dime | ensions (in | cnes) | | Standard (| Components | *Tune-Up Kit | | Shallow Series | Deep Series | Insert | Outside
Diameter
Range | A | В | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | | 421168-125S-030 | 421193-125L-030 | WG-4125 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421169-125S-035 | 421194-125L-035 | WG-4125 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421170-125S-0425 | 421195-125L-0425 | WG-4125 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421171-125S-055 | 421196-125L-055 | WG-4125 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421172-1255-075 | 421197-125L-075 | WG-4125 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421173-125S-125 | 421198-125L-125 | WG-4125 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.469 | 421323-125GC | 1/4-20 x 1 S.H.C.S. | TK-00801 | | 421174-1875-030 | 421199-187L-030 | WG-4187 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421175-1875-035 | 421200-187L-035 | WG-4187 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421176-1875-0425 | 421201-187L-0425 | WG-4187 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421177-1875-055 | 421202-187L-055 | WG-4187 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421178-1875-075 | 421203-187L-075 | WG-4187 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421179-187S-125 | 421204-187L-125 | WG-4187 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.469 | 421324-187GC | 1/4-20 x 1 S.H.C.S. | TK-00762 | | 421180-250S-030 | 421205-250L-030 | WG-6250 | 3.00 / 4.25 | 0.560 | 1.000 | 1.125 | 0.469 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421181-250S-0425 | 421206-250L-0425 | WG-6250 | 4.25 / 6.00 | 0.560 | 1.000 | 1.125 | 0.469 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421182-250S-060 | 421207-250L-060 | WG-6250 | 6.00 / 8.50 | 0.560 | 1.000 | 1.125 | 0.469 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421183-250S-085 | 421208-250L-085 | WG-6250 | 8.50 / 15.50 | 0.560 | 1.000 | 1.125 | 0.469 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421184-250S-155 | 421209-250L-155 | WG-6250 | 15.50 / 40.00 | 0.560 | 1.000 | 1.125 | 0.469 | 421325-250GC | 1/4-20 x 1 S.H.C.S. | TK-00808 | | 421185-312S-030 | 421210-312L-030 | WG-8312 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421186-312S-050 | 421211-312L-050 | WG-8312 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421187-312S-090 | 421212-312L-090 | WG-8312 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421188-312S-190 | 421213-312L-190 | WG-8312 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.469 | 421326-312GC | 1/4-20 x 1 S.H.C.S. | TK-00823 | | 421189-375S-030 | 421214-375L-030 | WG-8375 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421190-3755-050 | 421215-375L-050 | WG-8375 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421191-3755-090 | 421216-375L-090 | WG-8375 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.469 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | | 421192-375S-190 | 421217-375L-190 | WG-8375 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.469 | 421327-375GC | 1/4-20 x 1 S.H.C.S. | TK-00839 | $^{{}^*\ \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade.}$ See pages GP 60-62 for additional shank options. See pages GP 10 and GP 11 for inserts. ## Face Grooving Support Blade D | F | | Letertulu Shuhk Shown | | | | | | u= | | | |------------------|------------------|-----------------------|------------------------------|-------|-------------|-------|-------|--------------|---------------------|--| | Part N | umber | Gage | | Dime | ensions (in | ches) | | Standard (| Components | *Tune-Up Kit | | Shallow Series | Deep Series | Insert | Outside
Diameter
Range | A | В | C | F | Clamp | Clamp Screw | Includes all
Standard
Components | | 421268-125S-030 | 421293-125L-030 | WG-4125 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421269-125S-035 | 421294-125L-035 | WG-4125 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421270-1255-0425 | 421295-125L-0425 | WG-4125 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421271-125S-055 | 421296-125L-055 | WG-4125 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421272-125S-075 | 421297-125L-075 | WG-4125 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421273-125S-125 | 421298-125L-125 | WG-4125 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.031 | 421318-125GC | 1/4-20 x 1 S.H.C.S. | TK-00800 | | 421274-187S-030 | 421299-187L-030 | WG-4187 | 3.00 / 3.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421275-1875-035 | 421300-187L-035 | WG-4187 | 3.50 / 4.25 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421276-1875-0425 | 421301-187L-0425 | WG-4187 | 4.25 / 5.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421277-187S-055 | 421302-187L-055 | WG-4187 | 5.50 / 7.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421278-187S-075 | 421303-187L-075 | WG-4187 | 7.50 / 12.50 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421279-187S-125 | 421304-187L-125 | WG-4187 | 12.50 / 40.00 | 0.380 | 0.630 | 0.750 | 0.031 | 421319-187GC | 1/4-20 x 1 S.H.C.S. | TK-00794 | | 421280-250S-030 | 421305-250L-030 | WG-6250 | 3.00 / 4.25 | 0.560 | 1.000 | 1.125 | 0.031 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | 421281-250S-0425 | 421306-250L-0425 | WG-6250 | 4.25 / 6.00 | 0.560 | 1.000 | 1.125 | 0.031 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | 421282-250S-060 | 421307-250L-060 | WG-6250 | 6.00 / 8.50 | 0.560 | 1.000 | 1.125 | 0.031 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | 421283-250S-085 | 421308-250L-085 | WG-6250 | 8.50 / 15.50 | 0.560 |
1.000 | 1.125 | 0.031 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | 421284-250S-155 | 421309-250L-155 | WG-6250 | 15.50 / 40.00 | 0.560 | 1.000 | 1.125 | 0.031 | 421320-250GC | 1/4-20 x 1 S.H.C.S. | TK-00802 | | 421285-312S-030 | 421310-312L-030 | WG-8312 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | 421286-312S-050 | 421311-312L-050 | WG-8312 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | 421287-312S-090 | 421312-312L-090 | WG-8312 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | 421288-312S-190 | 421313-312L-190 | WG-8312 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.031 | 421321-312GC | 1/4-20 x 1 S.H.C.S. | TK-00849 | | 421289-3755-030 | 421314-375L-030 | WG-8375 | 3.00 / 5.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | 421290-3755-050 | 421315-375L-050 | WG-8375 | 5.00 / 9.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | 421291-3755-090 | 421316-375L-090 | WG-8375 | 9.00 / 19.00 | 0.750 | 1.310 | 1.500 | 0.031 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | | 421292-375S-190 | 421317-375L-190 | WG-8375 | 19.00 and up | 0.750 | 1.310 | 1.500 | 0.031 | 421322-375GC | 1/4-20 x 1 S.H.C.S. | TK-00797 | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the support blade. See pages GP 60-62 for additional shank options. See pages GP 10 and GP 11 for inserts. ## **Notes:** ### **Technical Data** ### Face Grooving Tools - Ordering Instructions Face grooving tools must be matched to a specific radius and are, therefore, manufactured to order for your particular application. We offer tools either with integral support blades (SFG) or with separate replaceable blades (AFG). Four combinations are available relative to hand of tool and hand of radius. When ordering replaceable blade styles, we suggest the purchase of additional back-up blades at time of original order. For your convenience in ordering or request for quotation, we have published sample blank engineering data forms. You must provide ALL of the dimensional data listed to ensure the correct tool being manufactured. **Note:** Tools will be quoted either with radius relieved blades or angular relieved blades, according to groove diameter. Radius relieved blades are illustrated. **AFGVLL** AFGVLR **AFGVRL** | AFGV | A | С | F | |------------|----------------|------------------|------------| | Drawing # | B ₁ | D (depth of cut) | G (radius) | | R (radius) | B ₂ | E | H (radius) | | SFGV | A | C | F | |------------|----------------|------------------|------------| | Drawing # | B ₁ | D (depth of cut) | G (radius) | | R (radius) | B ₂ | E | H (radius) | ## Straight Shank Holder For Support Blades | Part N | lumber | Dimensions (inches) | | |) | Standard Components | *Tune-Up Kit | |--------|--------|---------------------|-------|-------|-------|----------------------|--| | Right | Left | A | В | C | F | Mounting Screw | Includes all
Standard
Components | | 411055 | 411056 | 1.000 | 1.000 | 4.500 | 1.031 | 5/16-18 x 1 F.H.C.S. | TK-00579 | | 411059 | 411449 | 1.250 | 1.250 | 5.500 | 1.281 | 5/16-18 x 1 F.H.C.S. | TK-00579 | | 411015 | 411016 | 1.500 | 1.500 | 7.500 | 1.531 | 5/16-18 x 1 F.H.C.S. | TK-00579 | $^{{}^*\ \, {\}it Tune-Up\ Kits\ include\ one\ complete\ set\ of\ Standard\ Components\ to\ allow\ you\ to\ refurbish\ the\ toolholder.}$ ## Round Shank Holder For Support Blades | Part N | umber | | Dimen | sions (inches |) | Standard Components | *Tune-Up Kit | |--------|--------|-------|-------|---------------|-------|----------------------|--| | Right | Left | A | В | C | F | Mounting Screw | Includes all
Standard
Components | | 519600 | 519601 | 1.500 | 6.000 | 8.250 | 1.031 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | 519602 | 519603 | 2.000 | 6.000 | 8.250 | 1.281 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | 519604 | 519605 | 2.500 | 6.000 | 8.250 | 1.531 | 5/16-18 X 1 F.H.C.S. | TK-00579 | $^{* \ \, \}textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ## KM Shank #### Face Mount | Part Number | Dimensions (inches) | Standard Components | *Tune-Up Kit | |--------------|---------------------|----------------------|--| | Face Mount † | А | Mounting Screw | Includes all
Standard
Components | | SBH-KM50-F | 1.969 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | SBH-KM63-F | 2.480 | 5/16-18 X 1 F.H.C.S. | TK-00579 | - High-pressure coolant 1,500 PSI Max (100 bar) * Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. - † These tools based on KM63UT shank. ### KM Shank #### Side Mount | Part Number | Dimensio | ns (inches) | Standard Components | *Tune-Up Kit | |--------------|----------|-------------|----------------------|--| | Face Mount † | A | В | Mounting Screw | Includes all
Standard
Components | | SBH-KM50-S | 0.687 | 1.969 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | SBH-KM63-S | 0.790 | 2.480 | 5/16-18 X 1 F.H.C.S. | TK-00579 | High-pressure coolant - 1,500 PSI Max (100 bar) ### **ISO 26623 Shank** #### Face Mount | Part Number | Dimensions (inches) | Standard Components | *Tune-Up Kit | |-------------|---------------------|----------------------|--| | Face Mount | A | Mounting Screw | Includes all
Standard
Components | | SBH-C5-F | 1.969 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | SBH-C6-F | 2.480 | 5/16-18 X 1 F.H.C.S | TK-00579 | High-pressure coolant – 1,500 PSI Max (100 bar) ### **ISO 26623 Shank** #### Side Mount | Part Number | Dimensions (inches) | | Standard Components | *Tune-Up Kit | |-------------|---------------------|-------|----------------------|--| | Face Mount | A | В | Mounting Screw | Includes all
Standard
Components | | SBH-C5-S | 0.687 | 1.969 | 5/16-18 X 1 F.H.C.S. | TK-00579 | | SBH-C6-S | 0.790 | 2.480 | 5/16-18 X 1 F.H.C.S. | TK-00579 | High-pressure coolant – 1,500 PSI Max (100 bar) ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. [†] These tools based on KM63UT shank. Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## **API Ring Groove** | Ring Max™ Inserts | RM 02-0 | |-----------------------------------|----------| | Ring Max™ II | RM 07-1 | | Ring Max™ III | RM 15-2 | | Ring Max™ Cartidges | RM 22-2 | | Ring Max™ STX | RM 25-29 | | Machining Methods Reference Guide | RM 30 | | Request Forms | RM 3 | ## Ring Max™ Grooving Inserts Greenleaf's Ring Max Grooving Inserts are a unique solution for machining API ring grooves and provide the capability of roughing and finishing in various materials. These inserts are specifically designed for use in Ring Max and will significantly increase productivity and savings. Please contact Greenleaf Corporation for any questions or assistance. # Ring Max[™] Grooving Insert Identification System ## **Insert Grades** ## **Carbide** #### **GA5036** A carbide grade that is best combined with the Ring Max for use in cast-steel applications, GA5036 has an advanced MT-CVD coating that promotes long tool life at high speeds. ### Ceramic #### WG-300[®] A whisker-reinforced Al₃O₃ ceramic that is very effective at machining high-temp alloy ring grooves, WG-300® offers increased removal rates up to 10 times higher than carbide. #### G-915 Greenleaf's most versatile grade for machining API ring grooves, G-915 can easily machine most materials and works well on machines with low RPMs. #### WG-600[®] A coated whisker-reinforced Al₃O₃ ceramic that offers longer tool life and better performance over uncoated ceramics due to excellent thermal and wear resistance at very high surface speeds. #### XSYTIN®-1 A phase-toughened ceramic for your most demanding applications, XSYTIN®-1 can run at lower RPMs and higher feed rates than any other ceramic grade and should be considered a first choice when machining rough weld overlay for API ring grooves. # Ring Max[™] Inserts GRM-GI | | | Steel | | Stainless
Steel
M | | Heat-Resistant
Super Alloys | | | | Dimensions (inches) | | | |--|---|-----------|----------|-------------------------|------------|--------------------------------|----------|----------|----------|---------------------|-------|-------| | Insert | Part Number | P | | | | S | | | | | | | | | | G-915 | GA5036 | WG-300 | 6-915 | 00E-5M | 009-5M | XSYTIN-1 | 6-915 | A | В | С | | | GRM-GI-BX150S | • | A | • | • | • | • | | | 0.625 | 0.250 | 0.031 | | | GRM-GI-BX151S | • . | lack | • | • | • | • | | | 0.625 | 0.250 | 0.031 | | | GRM-GI-BX152S | • | A | • | • | • | • | A | A | 0.750 | 0.250 | 0.031 | | | GRM-GI-BX153S | • | A | • | • | • | • | | | 0.750 | 0.250 | 0.031 | | | GRM-GI-BX154S | • | lack | • | • | • | • | A | A | 0.750 | 0.250 | 0.031 | | | GRM-GI-BX155R | • | A | • | • | • | • | A | A | 0.875 | 0.250 | 0.031 | | | GRM-GI-BX156R | • | A | • | • | • | • | A | A | 1.013 | 0.312 | 0.031 | | | GRM-GI-BX169R | • | A | • | • | • | • | | | 1.000 | 0.250 | 0.031 | | | GRM-GI-RSET1-SX* | • | A | • | • | • | • | A | A | 1.000 | 0.250 | 0.031 | | | GRM-GI-R46R | • | A | • | * | • | • | A | A | 1.000 | 0.250 | 0.060 | | | GRM-GI-RSET2-SX* | • | lack | • | • | • | • | A | A | 0.625 | 0.156 | 0.031 | | |
GRM-GI-RX201/5SX* | • | A | • | • | • | • | A | A | 0.604 | 0.188 | 0.015 | | | GRM-GI-10K/15KSX* | • | A | • | • | • | • | A | A | 0.625 | 0.250 | 0.030 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated | Uncoated First Choice ◆ Second Choice ● Alternative ▲ Interrupted/I | Milling � | | Grade | descriptio | ns — page | es RM 05 | | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened * Denotes multiple groove sizes (See chart to below) NOTE: Depending on groove size, some Ring Max™ inserts may have a hole. All pre-clad groove inserts are designed and built to suit customer specifications. NOTE: API groove specification GA/ISO-10423 is used for all finish inserts. | Group | Groove Size | |-----------|--| | R-SET1SX | R-21, R-23, R-24, R-26, R-27, R-30, R-31, R-34, R-35,R-37, R-39, R-41, R-44, R-45, R-49, R-53, R-57, R-61,R-65, R-69, R-82, R-84, R-99 | | R-SET2SX | R-12, R-13, R-14, R-15, R-16, R-17, R-18, R-19, R-20, R-22, R-25, R-29, R-33, R-36, R-40, R-43, R-48, R-52 | | 10K/15KSX | 10K-2 ¹ / ₁₆ ", 10K-3 ¹ / ₁₆ ", 15K-3 ¹ / ₁₆ " | ## Ring Max™ II Ring Groove Tooling The Ring Max[™] II cutters are designed to use fewer components for even greater dimensional accuracy and repeatability from groove to groove. Their unique design ensures accurate seating and secure locking of the insert cartridge into the cutter body. Standard features and benefits include: - Cutting of BX, R, and RX API ring grooves in Inconel 625 clad overlay in less than one minute! - Machines the groove and chamfers in one operation. - · Adjustable and replaceable cartridge design for easy maintenance. Please contact Greenleaf Corporation for any questions or assistance. ## Ring Max™ II Finishing Head Identification System RM ## Pictorial & Reference Index ## Ring Max™ II Tooling **RX** Series page: RM 12 10K and 15K Series page: RM 12 ### Reference Ring Max™ II Models page: RM 13 Ring Max™ II Pre-Clad page: RM 14 Machining Methods Reference Guide page: RM 30 Special Toolchanger Clearance Request Form page: RM 31 Pre-Clad Head Quote Request Form page: RM 31 # **Ring Max™ II**BX Series | Part Number | | Dir | mensions (inch | es) | Standard Components | | Inserts | | | |-----------------------------|-----------|-------|----------------|-------|----------------------|---------------------|--------------------|-------------------|--| | Groove Series - Shank Type* | Stock | A | В | С | Grooving
Cartidge | Chamfer
Cartidge | Grooving
Insert | Chamfer
Insert | | | GRM2-BX150 | See chart | 2.895 | 0.452 | 0.230 | GRM-GC-BX-150 | GRMCC01 | GRM-GI-BX150S | SPGN-322 | | | GRM2-BX151 | below | 3.064 | 0.468 | 0.230 | GRM-GC-BX-151 | GRMCC01 | GRM-GI-BX151S | SPGN-322 | | | GRM2-BX152 | for | 3.397 | 0.500 | 0.240 | GRM-GC-BX-152 | GRMCC01 | GRM-GI-BX152S | SPGN-322 | | | GRM2-BX153 | stocked | 4.048 | 0.556 | 0.280 | GRM-GC-BX-153 | GRMCC01 | GRM-GI-BX153S | SPGN-322 | | | GRM2-BX154 | sizes. | 4.687 | 0.608 | 0.310 | GRM-GC-BX-154 | GRMCC01 | GRM-GI-BX154S | SPGN-322 | | | GRM2-BX155 | | 5.932 | 0.700 | 0.340 | GRM-GC-BX-155 | GRMCC01 | GRM-GI-BX155R | SPGN-322 | | | GRM2-BX156 |] | 9.523 | 0.923 | 0.450 | GRM-GC-BX-156 | GRMCC01 | GRM-GI-BX156R | SPGN-322 | | | GRM2-BX169 | | 6.957 | 0.668 | 0.390 | GRM-GC-BX-169 | GRMCC01 | GRM-GI-BX169R | SPGN-322 | | ^{*} See chart to below | Shank Description | Ordering Code | |-------------------|---------------| | CAT50/ANSI 50 | A50 | | CAT40/ANSI 40 | A40 | | NMTB-50 | N50 | | NMTB-40 | N40 | | BT-50 | BT50 | | BT-40 | BT40 | | DIN 2080-A 50 | MN50 | | DIN 69871-A 50 | D50 | | HSK-100 | H100 | | CAPTO C-8 | C8 | | Stocked Sizes | | | | | | | | |-----------------|-----------------|--|--|--|--|--|--| | GRM2-BX150-A50 | GRM2-BX154-A40 | | | | | | | | GRM2-BX150-BT50 | GRM2-BX154-A50 | | | | | | | | GRM2-BX150-D50 | GRM2-BX154-BT50 | | | | | | | | GRM2-BX151-A50 | GRM2-BX154-D50 | | | | | | | | GRM2-BX151-BT50 | GRM2-BX155-A40 | | | | | | | | GRM2-BX151-D50 | GRM2-BX155-A50 | | | | | | | | GRM2-BX152-A40 | GRM2-BX155-BT50 | | | | | | | | GRM2-BX152-A50 | GRM2-BX155-D50 | | | | | | | | GRM2-BX152-BT50 | GRM2-BX156-A50 | | | | | | | | GRM2-BX152-D50 | GRM2-BX169-A50 | | | | | | | # **Ring Max™ II** R Series | Part Number | | Din | nensions (inch | es) | Standard Components | | Inserts | | | |-----------------------------|-----------|-------|----------------|-------|----------------------|---------------------|--------------------|-------------------|--| | Groove Series - Shank Type* | Stock | A | В | С | Grooving
Cartidge | Chamfer
Cartidge | Grooving
Insert | Chamfer
Insert | | | GRM2-R16 | See chart | 2.000 | 0.344 | 0.250 | GRM-GC-RSET 2 AX | GRMCC01 | GRM-GI-RSET 2 SX | SPGN-322 | | | GRM2-R24 | below | 3.750 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R27 | for | 4.250 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R31 | stocked | 4.875 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R35 | sizes. | 5.375 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R37 | | 5.875 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R39 | | 6.375 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R44 | | 7.625 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM2-R46 | | 8.313 | 0.531 | 0.390 | GRM-GC-R46 | GRMCC01 | GRM-GI-R46R | SPGN-322 | | ^{*} See chart to below | Shank Description | Ordering Code | |-------------------|---------------| | CAT50/ANSI 50 | A50 | | CAT40/ANSI 40 | A40 | | NMTB-50 | N50 | | NMTB-40 | N40 | | BT-50 | BT50 | | BT-40 | BT40 | | DIN 2080-A 50 | MN50 | | DIN 69871-A 50 | D50 | | HSK-100 | H100 | | CAPTO C-8 | C8 | | | Stocked Sizes | |---------------|---------------| | GRM2-R24-A50 | | | GRM2-R24-D50 | | | GRM2-R24N-A50 | | | GRM2-R24N-D50 | # **Ring Max™ II**RX Series / 10K and 15K Series | Part Number | | Dir | nensions (inch | es) | Standard Components | | Inserts | | |-----------------------------|-----------|-------|----------------|-------|----------------------|---------------------|--------------------|-------------------| | Groove Series - Shank Type* | Stock | A | В | С | Grooving
Cartidge | Chamfer
Cartidge | Grooving
Insert | Chamfer
Insert | | GRM2-RX201N | See chart | 1.813 | 0.219 | 0.160 | GRM-GCRX201/5-X | N/A | GRM-GI-RX201/5SX | N/A | | GRM2-RX205N | below | 2.250 | 0.219 | 0.160 | GRM-GCRX201/5-X | N/A | GRM-GI-RX201/5SX | N/A | | GRM2-10K2 | for | 4.623 | 0.377 | 0.258 | GRM-GC10/15K-X | GRMCC01 | GRM-GI-10/15KSX | SPGN-322 | | GRM2-10K3N | stocked | 5.748 | 0.377 | 0.258 | GRM-GC10/15K-X | N/A | GRM-GI-10/15KSX | N/A | | GRM2-10K5 | sizes. | 8.748 | 0.377 | 0.258 | GRM-GC10/15K-X | GRMCC01 | GRM-GI-10/15KSX | SPGN-322 | | GRM2-15K3 | | 6.623 | 0.377 | 0.258 | GRM-GC10/15K-X | GRMCC01 | GRM-GI-10/15KSX | SPGN-322 | ^{*} See chart to below | Shank Description | Ordering Code | |-------------------|---------------| | CAT50/ANSI 50 | A50 | | CAT40/ANSI 40 | A40 | | NMTB-50 | N50 | | NMTB-40 | N40 | | BT-50 | BT50 | | BT-40 | BT40 | | DIN 2080-A 50 | MN50 | | DIN 69871-A 50 | D50 | | HSK-100 | H100 | | CAPTO C-8 | C8 | | Stocked Sizes | |-----------------------------------| | Ring Max™ II RX and 10/15K Series | | are not standard stocked items. | | | | | | | | | | | | | | | ## Ring Max[™] II ## Assembled and Exploded Views Reference Guide Ring Max™ II Quote Request Form For information for a quote form you can download, see page RM 31. RM # **Ring Max™ BX-152 Pre-Clad**Assembled and Exploded Views Reference Guide **Special Toolchanger Clearance Request Form** For information for a quote form you can download, see page RM 31. # Ring Max™ III Ring Groove Tooling The Ring Max™ III is a high-precision, two-piece modular system for shop versatility. This system offers many head and shank configurations, including adaptability to Greenleaf's Excelerator® face mills. The Ring Max™ III line delivers the ultimate economical and flexible solution for any shop machining multiple API ring groove sizes. Standard features and benefits include: - Cutting of BX, R, and RX API ring grooves in Inconel 625 clad overlay in less than one minute. - Machines the groove and chamfers in one operation. - Adjustable and replaceable cartridge design for easy maintenance. Please contact Greenleaf Corporation for any questions or assistance. ## Ring Max™ III Finishing Head Identification System ## Pictorial & Reference Index ### Ring Max™ III Tooling Ring Max™ Grooving Cartridge page: RM 23 Ring Max™ Chamfer Cartridge page: RM 24 ### Reference Ring Max™ III Models page: RM 20 Ring Max™ III Pre-Clad page: RM 21 Machining Methods Reference Guide page: RM 30 Pre-Clad Head Quote Request Form page: RM 31 # **Ring Max™ III**BX Series / R Series / RX and 10/15K Series | | | | | ±0.002 | ± 0.010 | | 10.008 | ± 0.010 | |-------------------------|-----------------------------|---------------------|-------|--------|----------------------|---------------------|--------------------|-------------------| | | Part Number | Dimensions (inches) | | | Standard | l Components | Inserts | | | | Groove Series - Shank Type* | A | В | c | Grooving
Cartidge | Chamfer
Cartidge | Grooving
Insert | Chamfer
Insert | | | GRM3-BX150 | 2.895 | 0.452 | 0.230 | GRM-GC-BX-150 | GRMCC01 | GRM-GI-BX150S | SPGN-322 | | | GRM3-BX151 | 3.064 | 0.468 | 0.230 | GRM-GC-BX-151 | GRMCC01 | GRM-GI-BX151S | SPGN-322 | | l s | GRM3-BX152 | 3.397 | 0.500 | 0.240 | GRM-GC-BX-152 | GRMCC01 | GRM-GI-BX152S | SPGN-322 | | BX Series | GRM3-BX153 | 4.048 | 0.556 | 0.280 | GRM-GC-BX-153 | GRMCC01 | GRM-GI-BX153S | SPGN-322 | | 💥 | GRM3-BX154 | 4.687
 0.608 | 0.310 | GRM-GC-BX-154 | GRMCC01 | GRM-GI-BX154S | SPGN-322 | | | GRM3-BX155 | 5.932 | 0.700 | 0.340 | GRM-GC-BX-155 | GRMCC01 | GRM-GI-BX155R | SPGN-322 | | | GRM3-BX169 | 6.957 | 0.668 | 0.390 | GRM-GC-BX-169 | GRMCC01 | GRM-GI-BX169R | SPGN-322 | | | GRM3-R16 | 2.000 | 0.344 | 0.250 | GRM-GC-RSET 2 AX | GRMCC01 | GRM-GI-RSET 2 SX | SPGN-322 | | | GRM3-R24 | 3.750 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM3-R27 | 4.250 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | R Series | GRM3-R31 | 4.875 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | R Se | GRM3-R35 | 5.375 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM3-R37 | 5.875 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM3-R39 | 6.375 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | | GRM3-R44 | 7.625 | 0.469 | 0.320 | GRM-GC-RSET 1 X | GRMCC01 | GRM-GI-RSET 1 SX | SPGN-322 | | J | GRM3-RX201N | 1.813 | 0.219 | 0.160 | GRM-GCRX201/5-X | N/A | GRM-GI-RX201/5SX | N/A | | RX and 10/15K
Series | GRM3-RX205N | 2.250 | 0.219 | 0.160 | GRM-GCRX201/5-X | N/A | GRM-GI-RX201/5SX | N/A | | ld 10 | GRM3-10K2 | 4.623 | 0.377 | 0.258 | GRM-GC10/15K-X | GRMCC01 | GRM-GI-10/15KSX | SPGN-322 | | Xa | GRM3-10K3N | 5.748 | 0.377 | 0.258 | GRM-GC10/15K-X | N/A | GRM-GI-10/15KSX | N/A | | " | GRM3-15K3 | 6.623 | 0.377 | 0.258 | GRM-GC10/15K-X | GRMCC01 | GRM-GI-10/15KSX | SPGN-322 | NOTE: Due to blank availability, special designs may need to be a two-piece weld construction or no quote. # **Ring Max™ III** Shank Options # **Ring Max™ GRM3-BX155**Assembled and Exploded Views Reference Guide Special Toolchanger Clearance Request Form For information for a quote form you can download, see page RM 31. # Ring Max™ III Pre-Clad Assembled and Exploded Views Reference Guide Ring Max™ III Pre-Clad Head Quote Request Form For information for a quote form you can download, see page RM 31. ## Ring Max[™] Grooving Cartridge Identification System # **Ring Max**™ Grooving Cartridge | Car | Dimens | sions (inches) | Standard C | Inserts | | | |-------------|-----------------|----------------|---------------------------------|------------------------|-----------------------|----------------------| | Groove Size | Part Number | A | В | Clamp | Clamp Screw | Purchased Seperately | | BX-150 | GRM-GC-BX-150 | 1.000 | 2.625 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX150S | | BX-151 | GRM-GC-BX-151 | 1.000 | 2.625 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX151S | | BX-152 | GRM-GC-BX-152 | 1.000 | 2.625 | GRMUCS01S | GRMUCSO1S M6-1.0 SHCS | | | BX-153 | GRM-GC-BX-153 | 1.000 | 000 2.625 GRMUCS01S M6-1.0 SHCS | | M6-1.0 SHCS | GRM-GI-BX153S | | BX-154 | GRM-GC-BX-154 | 1.117 | 2.625 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX154S | | BX-155 | GRM-GC-BX-155 | 1.259 | 3.125 | GRMUCS04R | M8-1.25 SHCS | GRM-GI-BX155R | | BX-156 | GRM-GC-BX-156 | 1.188 | 3.125 | GRMUCS04R M8-1.25 SHCS | | GRM-GI-BX156R | | BX-169 | GRM-GC-BX-169 | 1.000 | 3.125 | GRMUCS04R | M8-1.25 SHCS | GRM-GI-BX169R | | R-SET1* | GRM-GCRSET1-X | 1.000 | 3.125 | GRMUCS03S | M6-1.0 SHCS | GRM-GI-RSET1SX | | R-SET2A* | GRM-GCRSET2A-X | 0.750 | 2.625 | GRMUCS05S | M5-0.8 SHCS | GRM-GI-RSET2SX | | R-SET2B* | GRM-GCRSET2B-X | 1.000 | 2.625 | GRMUCS03S | M5-0.8 SHCS | GRM-GI-RSET2SX | | R-46 | GRM-GCR46 | 1.000 | 3.125 | GRMUCS04R M8-1.25 SHCS | | GRM-GI-R46R | | RX-SET* | GRM-GCRX201/5-X | 0.750 | 2.625 | GRMUCS05S | M5-0.8 SHCS | GRM-GI-RX201/5SX | | 10/15K-SET* | GRM-GC10/15-X | 1.000 | 2.625 | GRMUCS05S | M5-0.8 SHCS | GRM-GI-10/15KSX | ^{*} Denotes multiple groove sizes (See chart below.) ### **Multiple-Groove Compatibility** Single cartridges can produce multiple grooves when used in the proper gage diameter Ring Max™ grooving head. Use this chart for compatibility. | Shank Description | Ordering Code | |-------------------|--| | R-SET1 | R-21, R-23, R-24, R-26, R-27, R-31, R-35, R-37, R-39, R-41, R-44, R-45, R-49, R-53, R-57, R-65, R-69, R-82, R-84 | | R-SET2A | R-12, R-13, R-14, R-15, R-16, R-17, R-18, R-19, R-20 | | R-SET2B | R-22, R-25, R-29, R-33, R-36, R-40, R-43, R-48, R-52 | | RX-SET | RX-201, RX-205 | | 10/15K-SET | 10K-2 ¹ / ₁₆ ", 10K-3 ¹ / ₁₆ ", 10K-5 ¹ / ₁₆ ", 15K-3 ¹ / ₁₆ " | # **Ring Max**TM Chamfer Cartridge | Cartridge | | Dimension Standard Components (inches) | | | | Inserts | Mounting Screws | |-----------|-------|--|--------|-------------|------------|----------------------|--------------------------------| | Cartridge | A | В | Clamp | Clamp Screw | Adj. Screw | Purchased Seperately | Supplied with
Grooving Head | | GRM-CC01 | 0.551 | 1.971 | CLM-19 | STCM-38 | AAS-M5 | SPGN-322 | M6-1.0 LHCS | All Ring Max $^{\!\scriptscriptstyle\mathsf{TM}}$ heads for generation 2 and 3 use the same chamfer cartridges. ## Ring Max[™] STX – Lathe Tooling The Ring Max™ STX system provides the same productivity gains as the Ring Max™ II and Ring Max™ III systems in a square shank tool. Whether you are machining a large diameter groove, or a standard BX, R, or RX groove, the Ring Max™ STX system is your solution for maximizing productivity in multiple API ring groove sizes. Standard features and benefits include: - Roughing and finishing of BX, R, and RX API ring grooves in Inconel 625 clad overlay in less than one minute. - Utilization of the same clamping system and inserts as the Ring Max™ II and Ring Max III™ cutter systems. - Available in common standard inch and metric shank sizes. Please contact Greenleaf Corporation for any questions or assistance. # Ring Max[™] STX Lathe Tooling Identification System ## Pictorial & Reference Index ### RING MAX™ Lathe Tooling Ring MaxTM STX Lathe Tooling page: RM 28 ### Reference Ring Max[™] STX Models page: RM 29 Lathe Tool Quote Request Form page: RM 31 # **Ring Max[™] STX**Lathe Tooling | Но | Holder | | | | Dimensions (inches) | | | | | | | | |-------------|--------------|----------------|-------|-------|---------------------|-------|-------|--|--|--|--|--| | Groove Size | Part Number | A [†] | B⁺ | С | D | E | F | | | | | | | DV 150 | STXBX15016D | 0.452 | 0.230 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | BX-150 | STXBX15085D | 0.452 | 0.230 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | BX-151 | STXBX15116D | 0.468 | 0.230 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | DV-131 | STXBX15185D | 0.468 | 0.230 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | BX-152 | STXBX15216D | 0.500 | 0.240 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | DA-132 | STXBX15285D | 0.500 | 0.240 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | BX-154 | STXBX15416D | 0.608 | 0.310 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | BX-134 | STXBX15485D | 0.608 | 0.310 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | DV 155 | STXBX15516D | 0.700 | 0.340 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | BX-155 | STXBX15585D | 0.700 | 0.340 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | DV 150 | STXBX15616D | 0.923 | 0.450 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | BX-156 | STXBX15685D | 0.923 | 0.450 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | DV 160 | STXBX16916D | 0.688 | 0.390 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | BX-169 | STXBX16985D | 0.688 | 0.390 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | D CETACV* | STXRSET116D | 0.469 | 0.320 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | R-SET1SX* | STXRSET185D | 0.469 | 0.320 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | D CETACY* | STXRSET216D | 0.469 | 0.320 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | R-SET2SX* | STXRSET285D | 0.469 | 0.320 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | D 46D | STXR4616D | 0.531 | 0.390 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | R-46R | STXR4685D | 0.531 | 0.390 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | | 40 IAFICOV | STX1015KX16D | 0.377 | 0.258 | 6.000 | 1.000 | 1.000 | 1.000 | | | | | | | 10/15KSX* | STX1015KX85D | 0.377 | 0.258 | 6.000 | 1.000 | 1.250 | 1.250 | | | | | | [†] Groove width and depth tolerances comply with API Standard 6A/ISO 10423. * Denotes multiple groove sizes (See Multiple-Groove Compatibility chart below.) | | Standard (| Standard Components | | | | | | | |-------------|------------|---------------------|------------------------------|--|--|--|--|--| | Groove Size | Clamp | Clamp Screw | Inserts Purchased Seperately | | | | | | | BX-150 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX150S | | | | | | | BX-151 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX151S | | | | | | | BX-152 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX152S | | | | | | | BX-154 | GRMUCS01S | M6-1.0 SHCS | GRM-GI-BX154S | | | | | | | BX-155 | GRMUCS04R | M8-1.25 SHCS | GRM-GI-BX155R | | | | | | | BX-156 | GRMUCS04R | M8-1.25 SHCS | GRM-GI-BX156R | | | | | | | BX-169 | GRMUCS04R | M8-1.25 SHCS | GRM-GI-BX169R | | | | | | | R-SET1SX* | GRMUCS03S | M6-1.0 SHCS | GRM-GI-RSET1SX | | | | | | | R-SET2SX* | GRMUCS05S | M5-0.8 SHCS | GRM-GI-RSET2SX | | | | | | | R-46R | GRMUCS04R | M8-1.25 SHCS | GRM-GI-R46R | | | | | | | 10/15KSX* | GRMUCS05S | M5-0.8 SHCS | GRM-GI-10/15KSX | | | | | | #### **Multiple-Groove Compatibility** Single cartridges can produce multiple grooves. Use this chart for compatibility. | Shank Description | Ordering Code | | | | | | |--|--|--|--|--|--|--| | R-SET1SX R-21, R-23, R-24, R-26, R-27, R-31, R-35, R-37, R-39, R-41, R-44, R-45, R-49, R-53, R-57, R-65, R-69, R-82,R-84 | | | | | | | | R-SET2SX | R-12, R-13, R-14, R-15, R-16, R-17, R-18, R-19, R-20 | | | | | | | 10/15K-SET | 10/15K, 10K-2 ¹ / ₁₆ ", 10K-3 ¹ / ₁₆ " | | | | | | # Ring Max[™] STX ## Assembled and Exploded
Views Reference Guide **Ring Max™ Lathe Quote Request Form** For information for a quote form you can download, see page RM 31. # Ring Max™ ## Machining Methods Reference Guide ## Method One Use these instructions for setting gage points and establishing target ring groove depths using an optical comparator. #### **Step One:** Using an optical comparator, find and set the gage points at the groove's A diameter at mid-tolerance. The groove's B dimension will be within the allowable tolerance range. #### **Step Two:** Once the gage points in Step One have been determined, measure, and record the tool's Z length and the actual measured C dimension over the insert nose. NOTE: The measured C dimension is the target machining depth and will be within the groove's allowable part tolerance. #### **Example for BX-152** | | A | В | | Z | | |------------------------------------|--------------------------------------|------------------------------------|------------------------------------|---|---| | Part print dimension and tolerance | Target this diameter for gage points | Part print dimension and tolerance | Part print dimension and tolerance | Measure and target this depth for programming | Measure and target this depth for programming | | 3.395" + 0.
- 0. | 3.397 | 0.498" + 0.004
- 0.000 | 0.230" + 0.020
- 0.000 | | | ## Method Two This method is used to machine ring grooves in a rough and finish pass. #### Step One: Machine the groove but reduce the groove depth to leave stock for the finish pass. #### **Step Two:** Measure the groove's A diameter and use the chart below to determine the additional D depth necessary to bring the A diameter into mid-tolerance. | If the A groove diameter is undersize by: | Increase the
groove depth D by: | |---|------------------------------------| | 0.0010 | 0.0012 | | 0.0020 | 0.0023 | | 0.0030 | 0.0035 | | 0.0040 | 0.0047 | | 0.0050 | 0.0059 | | 0.0060 | 0.0071 | | 0.0070 | 0.0082 | | 0.0080 | 0.0094 | | 0.0090 | 0.0106 | | 0.0100 | 0.0118 | | 0.0110 | 0.0130 | | 0.0120 | 0.0141 | ### Ring Max™ II Quote Request Form We have a Ring Max™ II Quote Request Form that you can download at — https://www.greenleafcorporation.com/RingMax2QuoteRequest.pdf If you have any questions, contact the Greenleaf Tech Team at 800-458-1850, or email the engineering department at engineering@greenleafcorporation.com. ### **Special Toolchanger Clearance Request Form** We have a Special Toolchanger Clearance Request Form that you can download at — https://www.greenleafcorporation.com/SpecialToolchangerClearanceRequest.pdf If you have any questions, contact the Greenleaf Tech Team at 800-458-1850, or email the engineering department at engineering@greenleafcorporation.com. ### Ring Max™ III Pre-Clad Head Quote Request Form We have a Ring Max™ III Pre-Clad Head Quote Request Form that you can download at — https://www.greenleafcorporation.com/RingMax3QuoteRequest.pdf If you have any questions, contact the Greenleaf Tech Team at 800-458-1850, or email the engineering department at engineering@greenleafcorporation.com. ## Ring Max™ Lathe Quote Request Form We have a Ring Max™ III Pre-Clad Head Quote Request Form that you can download at — https://www.greenleafcorporation.com/RingMax3QuoteRequest.pdf If you have any questions, contact the Greenleaf Tech Team at 800-458-1850, or email the engineering department at engineering@greenleafcorporation.com. # Indexable Drilling | Introduction | ID 03 | |---------------------------|-------| | Grade Descriptions | ID 04 | | Holemill™ Drilling System | ID 05 | | Holemill™ Inserts | ID 05 | | Technical Data | ID 06 | # Indexable Drilling The Holemill™ is an indexable drill utilizing Greenleaf's advanced coated-carbide grades for higher speeds, quieter cutting, longer tool life and reduced horsepower consumption. Inserts are positive squares (SPMT) for four indexes per insert. The Holemill is available in 1" to 3" diameters in 1/8" increments. ## **Insert Grades** ### **Carbide** Greenleaf offers a comprehensive line of carbide inserts in grades ranging from sub-micron C-1 through C-8 classifications. An industry pioneer in coated carbide, Greenleaf offers a variety of uncoated, MT-CVD coated and PVD-coated grades. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. #### **PVD Coated** #### G-915 A multi-layer PVD-coated grade, G-915 is excellent for heat-resistant alloys, stainless steels, and low-carbon steels. The multi-layer PVD coating adds heat and abrasion resistance to the tough, impact-resistant substrate. G-915 should be used at moderate speeds and moderate to high feeds. #### G-935 G-935 is a multi-layer PVD-coated grade for applications requiring additional resistance to mechanical and thermal shock. The multilayered PVD coating raises the speed envelope and wear resistance, particularly in indexable drilling. # *Holemill™ System* | | | Ga | ge | | | Dimei | nsions (in | rches) | Standard Components | | | |---------------------------|----------------|-----|-----------------|-----|---------------|-------|--------------|-----------------|---------------------|---------------------|----------| | Part Number
Right Hand | Insert Inboard | Qty | Insert Outboard | Qty | A Depth B C D | | Insert Screw | *Tune-Up
Kit | | | | | HM3X-094 | SPMT-2.522-X2 | 1 | SPMT-2.522-X2 | 1 | 0.937 | 3.000 | 4.130 | 8.000 | 1.250 | PT-543-T | TK-00737 | | HM3X-100 | SPMT-2.522-X2 | 1 | SPMT-2.522-X2 | 1 | 1.000 | 3.000 | 4.130 | 8.000 | 1.250 | PT-543-T | TK-00737 | | HM3X-112 | SPMT-2.522-X2 | 1 | SPMT-32.52-X2 | 1 | 1.125 | 3.375 | 4.380 | 8.250 | 1.250 | PT-543-T & PT559-T | TK-02619 | | HM3X-125 | SPMT-32.52-X2 | 1 | SPMT-32.52-X2 | 1 | 1.250 | 3.750 | 4.880 | 8.750 | 1.250 | PT-559-T | TK-00738 | | HM3X-138 | SPMT-432-X2 | 1 | SPMT-32.52-X2 | 1 | 1.375 | 4.500 | 5.880 | 9.750 | 1.500 | PT-588-T & PT-559-T | TK-00936 | | HM3X-150 | SPMT-432-X2 | 1 | SPMT-432-X2 | 1 | 1.500 | 4.500 | 5.880 | 9.750 | 1.500 | PT-588-T | TK-00739 | | HM3X-162 | SPMT-432-X2 | 1 | SPMT-432-X2 | 1 | 1.625 | 5.250 | 6.630 | 10.500 | 1.500 | PT-588-T | TK-00739 | | HM3X-175 | SPMT-432-X2 | 1 | SPMT-432-X2 | 1 | 1.750 | 5.250 | 6.630 | 10.500 | 1.500 | PT-588-T | TK-00739 | | HM3X-188 | SPMT-32.52-X2 | 1 | SPMT-32.52-X2 | 2 | 1.875 | 6.000 | 7.580 | 11.500 | 2.000 | PT-559-T | TK-00734 | | HM3X-200 | SPMT-32.52-X2 | 1 | SPMT-432-X2 | 2 | 2.000 | 6.000 | 7.620 | 11.500 | 2.000 | PT-588-T & PT-544-T | TK-01961 | | HM3X-225 | SPMT-32.52-X2 | 1 | SPMT-432-X2 | 2 | 2.250 | 6.750 | 8.380 | 12.250 | 2.000 | PT-588-T & PT-544-T | TK-01961 | | HM3X-238 | SPMT-432-X2 | 1 | SPMT-432-X2 | 2 | 2.375 | 7.500 | 9.130 | 13.000 | 2.000 | PT-588-T | TK-00751 | | HM3X-250 | SPMT-432-X2 | 1 | SPMT-432-X2 | 2 | 2.500 | 7.500 | 9.130 | 13.000 | 2.000 | PT-588-T | TK-00751 | | HM3X-275 | SPMT-32.52-X2 | 2 | SPMT-432-X2 | 2 | 2.750 | 8.250 | 9.880 | 13.750 | 2.000 | PT-588-T & PT-544-T | TK-02353 | | HM3X-288 | SPMT-432-X2 | 2 | SPMT-432-X2 | 2 | 2.875 | 9.000 | 10.630 | 14.500 | 2.000 | PT-588-T | TK-00752 | | HM3X-300 | SPMT-432-X2 | 2 | SPMT-432-X2 | 2 | 3.000 | 9.000 | 10.630 | 14.500 | 2.000 | PT-588-T | TK-00752 | ^{*} Tune-Up Kits include one complete set of standard components to allow you to refurbish the Holemill. ## Holemill™ Inserts SPMT-X2 | Inserts | Steel Stainless Cast Heat-Resistant Steel Iron Super Alloys Part Number Insert P M K S Part | | Part Number | Dimensions (inches) | | | | | | | | | | | | |---|---|----------|-------------|---------------------|-------|----------|-------|-------|-------|-------|----------------|-------|-------|-------|-------| | | ANSI | Position | G-935 | 6-915 | 6-915 | G-935 | G-915 | G-935 | G-935 | G-915 | ISO | A | L | Т | R | | | SPMT-2.522-X2 | Inboard | • | • | • | • | • | • | • | • | SPMT-070308-X2 | 0.312 | 0.312 | 0.125 | 0.031 | | | SPMT-2.522-X2 | Outboard | • | ♦ | • | • | • | • | • | • | SPMT-070308-X2 | 0.312 | 0.312 | 0.125 | 0.031 | | | SPMT-32.52-X2 | Inboard | • | • | • | • | • | • | • | • | SPMT-09T308-X2 | 0.375 | 0.375 | 0.156 | 0.031 | | | SPMT-32.52-X2 | Outboard | • | * | • | • | • | • | • | • | SPMT-09T308-X2 | 0.375 | 0.375 | 0.156 | 0.031 | | | SPMT-432-X2 | Inboard | • | • | • | • | • | • | • | • | SPMT-120408-X2 | 0.500 | 0.500 | 0.187 | 0.031 | | | SPMT-432-X2 | Outboard | • | ♦ | • | * | • | • | • | • | SPMT-120408-X2 | 0.500 | 0.500 | 0.187 | 0.031 | | CARBIDE COATINGS: MT-CVD Coated PVD Coate | | | | | | | | | | | | | | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened ## Feed and Speed for Greenleaf Holemill™ | Material | Hardness (HRc) | SFM | Feed Rate (IPR) | | | | |--|----------------|----------|-----------------|--------------|--|--| | Material | naruness (nac) |)LIM | 1–1.75" Dia. | 1.75–3″ Dia. | | | | Low Carbon Steel / Free Machining | up to 25 | 450-1000 | .004008 | .005010 | | | | 1010, 1018, 12L14 | up to 25 | 430 1000 | .007.000 | .005 .010 | | | | High Carbon Steel | 25-40 | 200-600 | .004008 | .005010 | | | | 1080, 1541, Nitralloy, 52100 | 23-40 | 200-000 | .004006 | .005010 | | | | Alloy Steel | 15-30 | 400-900 | .004008 | .005010 | | | | 4140, 4340, 6150, 8620 | 15-50 | 400-300 | .004000 | .005010 | | | | Tool Steel | up to 30 | 250-600 | .004008 | .005010 | | | | A-6, D-2, P-20, H-13 | ир 10 30 | 230-000 | .004006 | .005010 | | | | High-Temp Alloys | up to 45 | 90-225 | .003005 | .003005 | | | | Inconel, Hastelloy, Waspaloy, Stellite | up to 45 | 90-223 | .005005 | .005005 | | | | Stainless Steel | un to 22 | 250-550 | .003007 | 004 009 | | | | 304, 316, 17-4PH | up to 32 | 230-330 | .005007 | .004008 | |
 ## Greenleaf Holemill™ Operational Information For best results in static drilling, set up the Greenleaf Holemill with the drill in the turret in an attitude that puts the inserts parallel to the ways of the machine with the inboard insert located toward the operator as shown. | Notes: | | |--------|--| ## Tube Scarfing | Introduction | TS 03 | |--------------------|----------| | Grade Descriptions | TS 04 | | Pictorial Index | TS 05 | | Inserts | TS 06-08 | | Toolholders | TS 09 | ## Tube Scarfing Greenleaf's modern tube scarfing system using indexable inserts offers greatly increased productivity potential from decreased downtime, longer tool life, faster tool change time, decreased tool costs and elimination of regrinding problems. In addition, a superior seam can be expected since an accurate radius form is always available on each side of the insert. #### **Greenleaf Tune-Up Kits** A Tune-Up Kit consists of all the standard hardware to refurbish a particular toolholder, boring bar, or milling cutter. A toolholder will have a readily visible, laser-inscribed Tune-Up Kit number on it for ease in ordering. This number will prevent any confusion created by searching a catalog for hardware, and it will help reduce downtime. ### **Insert Grades** #### **Carbide** Greenleaf offers a comprehensive line of carbide inserts in grades ranging from sub-micron C-1 through C-8 classifications. An industry pioneer in coated carbide, Greenleaf offers a variety of uncoated, MT-CVD coated and PVD-coated grades. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. #### **Ceramic** Greenleaf is the industry leader in the development and manufacture of ceramic and coated ceramic inserts in ANSI standard and special geometries. #### GA5023 A combination of an advanced MT-CVD coating and medium-grain substrate makes GA5023 an excellent choice for tube scarfing applications where toughness and abrasive wear resistance are required. The GA5023 grade is a tougher alternative option to GA5025 for any tube scarfing application. #### **GEM-19™** A cold-pressed and sintered Al₂O₃ ceramic, GEM-19[™] provides an economical tube scarfing solution for high-speed operations with demanding finish requirements. #### **GA5025** Primarily developed for high-speed steel turning, GA5025 also excels as a grade for tube scarfing applications thanks to its thick MT-CVD coating and hard, heat-resistant substrate. GA5025 is a great first choice when tool life and superior heat resistance are top priorities. ## Pictorial & Reference Index ## **Toolholders** Insert S-SPUB-63 N-SSCPS page: TS 06 page: TS 09 S-SPUB-86 page: TS 06 N-WSCNN S-SGUB-63 page: TS 09 page: TS 07 S-SNUN-46 page: TS 07 **ID** Scarfing page: TS 08 ## S-SPUB-63 | | | | | Dimension | ns (inches) | |--|---|--------|--------------|-------------------|-------------| | Shape: Scarfing | Part Number | GA5023 | GA5025 | Tube Size | Radius | | | S-SPUB-63-B | • | • | Up to .875" | 0.475 | | | S-SPUB-63-C | • | • | .875-1.125" | 0.590 | | | S-SPUB-63-D | • | • | 1.125-1.500" | 0.785 | | | S-SPUB-63-R | • | • | 1.750" | 0.875 | | | S-SPUB-63-E | • | • | 1.500-1.875" | 0.985 | | | S-SPUB-63-F | • | • | 1.875-2.250" | 1.180 | | | S-SPUB-63-G | • | • | 2.250-3.125" | 1.575 | | | S-SPUB-63-H | • | • | 3.125-3.875" | 1.970 | | | S-SPUB-63-I | • | • | 3.875-4.875" | 2.470 | | | S-SPUB-63-J | • | • | 4.875"-5.875" | 2.970 | | | S-SPUB-63-K | • | • | 5.875-6.875" | 3.470 | | | S-SPUB-63-L | • | • | 6.875-7.875" | 3.970 | | | * S-SPUB-63-M | • | • | 7.875" and up | NONE | | | S-SPUB-63-P | • | • | | 6.000 | | | S-SPUB-63-S | • | • | | 0.375 | | CARBIDE COATINGS: MT-CVD Coated PVD Coated | Incoated First Choice ◆ Second Choice ● Alternative ▲ | Grad | e descriptio | ons — pages TS 04 | | Note: Applicable for thin-wall pipe up to .250" thick * Note: This insert has 11° positive clearance all around. S-SPUB-86 $Additional\ thickness\ and\ flank\ clearance\ for\ heavy-wall\ pipe\ and\ pipe\ diameters\ over\ 5''\ are\ available.$ | | | GA5023 | | Dimensio | ns (inches) | |-----------------|---------------|--------|--------|---------------|-------------| | Shape: Scarfing | Part Number | | GA5025 | Tube Size | Radius | | | S-SPUB-86-B | • | • | Up to .875" | 0.475 | | | S-SPUB-86-C | • | • | .875-1.125" | 0.590 | | | S-SPUB-86-D | • | • | 1.125-1.500" | 0.785 | | | S-SPUB-86-E | • | • | 1.500-1.875" | 0.985 | | | S-SPUB-86-F | • | • | 1.875-2.250" | 1.180 | | | S-SPUB-86-G | • | • | 2.250-3.125" | 1.575 | | | S-SPUB-86-H | • | • | 3.125-3.875" | 1.970 | | | S-SPUB-86-I | • | • | 3.875-4.875" | 2.470 | | | S-SPUB-86-J | • | • | 4.875"-5.875" | 2.970 | | 1 | S-SPUB-86-K | • | • | 5.875-6.875" | 3.470 | | | S-SPUB-86-L | • | • | 6.875-7.875" | 3.970 | | | * S-SPUB-86-M | • | • | 7.875" and up | NONE | | | S-SPUB-86-N | • | • | | 5.000 | | | S-SPUB-86-S | • | • | | 9.500 | | | S-SPUB-86-P | • | • | | 6.250 | * Note: This insert has 13° positive clearance all around. ## **S-SGUB-63** # RADIUS TYP. Additional flank clearance for coated tube operations. | | | | Dimensions (inches) | | | | |-----------------|---------------|--------|---------------------|--------|--|--| | Shape: Scarfing | Part Number | GA5025 | Tube Size | Radius | | | | | S-SGUB-63-B | • | Up to .875" | 0.475 | | | | | S-SGUB-63-C | • | .875-1.125" | 0.590 | | | | | S-SGUB-63-D | • | 1.125-1.500" | 0.785 | | | | | S-SGUB-63-E | • | 1.500-1.875" | 0.985 | | | | | S-SGUB-63-F | • | 1.875-2.250" | 1.180 | | | | | S-SGUB-63-G | • | 2.250-3.125" | 1.575 | | | | | S-SGUB-63-H | • | 3.125-3.875" | 1.970 | | | | | S-SGUB-63-I | • | 3.875-4.875" | 2.470 | | | | | S-SGUB-63-J | • | 4.875"-5.875" | 2.970 | | | | | S-SGUB-63-K | • | 5.875-6.875" | 3.470 | | | | | S-SGUB-63-L | • | 6.875-7.875" | 3.970 | | | | | * S-SGUB-63-M | • | 7.875" and up | NONE | | | | | S-SGUB-63-R | • | 1.750" DIA | 0.875 | | | | | S-SGUB-63-S | • | | 0.375 | | | | | S-SGUB-63-P | • | | 6.000 | | | CERAMIC CLASSIFICATION: Whisker Ceramic Phase-Toughened S * Note: This insert has 30° positive clearance all around. ## S-SNUN-46 Ceramic-Style Insert | | | | Dimensions (inches) | | | | |-----------------|-------------|--------|---------------------|--------|--|--| | Shape: Scarfing | Part Number | GEM-19 | Tube Size | Radius | | | | | S-SNUN-46-B | • | Up to .875" | 0.475 | | | | | S-SNUN-46-C | • | .875-1.125" | 0.590 | | | | | S-SNUN-46-D | • | 1.125-1.500" | 0.785 | | | | | S-SNUN-46-E | • | 1.500-1.875" | 0.985 | | | | | S-SNUN-46-F | • | 1.875-2.250" | 1.180 | | | | | S-SNUN-46-G | • | 2.250-3.125" | 1.575 | | | | S. T. Carrier | S-SNUN-46-H | • | 3.125-3.875" | 1.970 | | | ## **ID Scarfing Insert** Other sizes available upon request. NOTE: This illustration is for reference only Greenleaf ID tube scarfing inserts are specially designed and manufactured to meet specific customer requirements for various tube scarfing applications. For more information on Greenleaf's ID tube scarfing capabilities, please contact Greenleaf Technical Service at 800-763-1820 or techteam@greenleafcorporation.com. ### N-SSCPS | | | | Angle Dimensions (inches | | ns (inches) | Standard Component | Tune-Up Kit* | |------------------|-------------|--------------|--------------------------|-------|---------------------|---------------------|--------------| | | | ~ | | | Includes All | | | | Part Number | Gage Insert | X | A | В | Insert Screw | Standard Components | | | N-SSCPS-12-90 | S-SPUB-63 | 90° | 0.750 | 0.750 | 10-32 x 1/2 IPFHCS | TK-00576 | | | N-SSCPS-12-95 | S-SPUB-63 | 95° | 0.750 | 0.750 | 10-32 x 1/2 IPFHCS | TK-00576 | | | N-SSCPS-12-100 | S-SPUB-63 | 100° | 0.750 | 0.750 | 10-32 x 1/2 IPFHCS | TK-00576 | | | N-SSCPS-12-105 | S-SPUB-63 | 105° | 0.750 | 0.750 | 10-32 x 1/2 IPFHCS | TK-00576 | | | N-SSCPS-16-8-90 | S-SPUB-86 | 90° | 1.000 | 1.000 | 1/4-20 x 3/4 IPFHCS | TK-00760 | | | N-SSCPS-16-8-95 | S-SPUB-86 | 95° | 1.000 | 1.000 | 1/4-20 x 3/4 IPFHCS | TK-00760 | | | N-SSCPS-16-8-100 | S-SPUB-86 | 100° | 1.000 | 1.000 | 1/4-20 x 3/4 IPFHCS | TK-00760 | | | N-SSCPS-16-8-105 | S-SPUB-86 | 105° | 1.000 | 1.000 | 1/4-20 x 3/4 IPFHCS | TK-00760 | | ^{*} Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder. ## **N-WSCNN** | | | Angle | Standard C | Standard Component | | | | |----------------|-------------|-------|------------|--------------------|---------------------|--|--| | | | | | | Includes All | | | | Part Number | Gage Insert | Х | Wedge | Wedge Screw | Standard Components | | | | N-WSCNN-12-90 | S-SNUN-46 | 90° | 303996 | 38309 | TK-00577 | | | | N-WSCNN-12-95 | S-SNUN-46 | 95° | 303996 | 38309 | TK-00577 | | | | N-WSCNN-12-100 | S-SNUN-46 | 100° | 303996 | 38309 | TK-00577 | | | | N-WSCNN-12-105 | S-SNUN-46 | 105° | 303996 | 38309 | TK-00577 | | | $^{{\}color{blue}*} \ \, \textit{Tune-Up Kits include one complete set of Standard Components to allow you to refurbish the toolholder}.$ ### **Tool Holder Selection Guide** - 1. The tool holder angle (Angle X) should match the angle of the tube mill tool post. - 2. The correct setup will allow for 15° of clearance between the tool holder body, and the top of the tube. ## Special Engineering **Aerospace Tools** **Milling Cutters** **Special Inserts** **Special Designs/Layouts** Link to download Special Tool Design Information Checklist ## Special Engineering Greenleaf Corporation is a leading supplier of cutting-tool technology, specializing in the manufacture of high-performance tungsten carbide and ceramic inserts, as well as inventive tool-holding systems. Greenleaf continues to build on over 75 years of innovation which
centers on supplying customers with productive solutions to their metalcutting needs. Today, Greenleaf Corporation is positioned to serve the evolving needs of companies in all major segments of the metalcutting industry including gas turbine, steel, medical, roll turning, automotive, machine tools and rail. Greenleaf's products are engineered to provide optimal performance against a wide range of materials under the most rigorous metalcutting conditions. Special engineered or custom engineered products is a visible strength of the Greenleaf product line. Customers from around the world utilize the Greenleaf engineering services to address their specific, and often complex, requirements. Ask us to determine if we can assist you in your cutting tool special requirements. In addition to specially engineered tooling systems and a comprehensive line of carbide inserts, Greenleaf offers high-quality ceramic and ceramic-composite materials which can be custom designed for specific machining applications. From its headquarters in Saegertown, Pennsylvania, and a facility in North Carolina, Greenleaf maintains its commitment to pioneering breakthroughs in cutting-tool technology and to delivering Excelerated solutions for customers around the world. If you have a project that needs tooling designed for the needs and demands of that project, we're here to help. We have a Special Tool Design Information Checklist form that you can download at — https://www.greenleafcorporation.com/SpecialToolDesignChecklist.pdf Fill it out and email it to engineering@greenleafcorporation.com. If you have any questions, don't hesitate to contact the Greenleaf Tech Team at 800-458-1850, or email the engineering department at the above email. ## Application and Technical Information #### Carbide | Carpiac | | |--|-----------| | Grade Descriptions | ATI 02-03 | | Insert Grade Reference | | | Feed and Speed Data | ATI 06-09 | | Chipform Application Range | | | Ceramic | | | Grade Descriptions | ATI 12 | | Insert Grade Reference | ATI 14-15 | | Chip Thickness and Speed Data | ATI 16-20 | | Edge Preparation and Application Guide | ATI 22-23 | | Formulas for Turning and Facing | ATI 24 | | Optional Clamps | ATI 25 | | | | Ceramic Productivity Manual ### **Insert Grades** #### **Carbide** Greenleaf offers a comprehensive line of carbide inserts in grades ranging from sub-micron C-1 through C-8 classifications. An industry pioneer in coated carbide, Greenleaf offers a variety of uncoated, MT-CVD coated and PVD-coated grades. Carbide inserts are available in ANSI standard geometries with multi-purpose chipbreakers for heavy roughing through finishing. #### Coated **G5125+** A tough, Co-enriched, CVD-coated grade that is ideally suited for the roughing and semi-finishing of steels in turning. Intended applications range from clean and continuous to heavily interrupted cuts in steels of various hardness and composition, at medium to high speeds and moderate feed rates. **GA5023** A high-performance grade designed for the turning and milling of various grades of cast iron, GA5023 features an advanced MT-CVD coating specifically developed to withstand the abrasiveness of cast iron in machining. Applications range from roughing to finishing in most grades of cast iron, including gray, nodular, and others. The high wear resistance and toughness of GA5023 enable high-speed machining in a wide range of feed rates. **GA5025** A high-speed MT-CVD coated grade developed primarily for turning, GA5025 excels in light roughing and finishing applications of carbon and alloy steels, including select stainless steels. GA5025 is preferred when tool life and wear resistance are essential in steel turning. **GA5026** A high-performance grade specifically developed for finish-turning in nickel- and cobalt-based super-alloys, stainless steels, hardened steels, and refractory metals. The advanced MT-CVD coating over a micro-grain substrate offers outstanding wear resistance while maintaining exceptional resistance to notching and deformation common in turning of high-strength materials. GA5026 is best applied at high speeds and low feed rates. **GA5035** A high-performance MT-CVD coated grade for turning all types of steels, GA5035 can be used for heavy roughing to finish-turning applications requiring resistance to heat deformation, thermal shock from interrupted cuts, and abrasion. GA5035 should be applied at high speeds and a moderate range of feeds. GA5035 is the primary choice for steel turning. **GA5036** A high-speed MT-CVD coated milling grade, GA5036 should be used when milling forged and cast steels along with select ductile irons. GA5036 constitutes a unique combination of toughness and heat resistance, making it suitable for heavy and light-duty milling at high cutting speeds. It is a great first choice for all steel milling. **GA5125** A high-performance MT-CVD coated carbide used primarily for the milling and turning of manganese steel. GA-5125 can also be applied in Cr-Mo steels, tool steels, and other alloyed steels in continuous and interrupted turning. GA-5125 provides excellent resistance to abrasion, crater wear, thermal shock, deformation, and built-up edge. It performs best when applied at high speeds and moderate feed rates. **G-5135** A coarse-grain MT-CVD coated carbide, G-5135 is ideal for rough steel turning operations, including scale and moderate-to-heavy interruptions, as well as select steel milling applications. G-5135 is also applicable in the roughing of cast irons and stainless steels. Apply at moderate speeds and high feed rates. **G-910** A PVD-coated grade designed for milling heatresistant alloys, stainless steel, and low-carbon steels. G-910 should be applied at moderate speeds and moderate to high feed rates. **G-915** A multi-layer PVD-coated grade, G-915 is exceptional for milling and interrupted turning of heat-resistant alloys, stainless steels, and low-carbon steels. The coating adds heat and abrasion resistance to the tough substrate. G-915 should be used at moderate speeds and moderate to high feeds. It is a versatile grade that performs well in a variety of materials and operations outside its primary application range, making it a great choice for general machining. **G-9120** This multi-layer PVD-coated carbide grade excels at milling and turning steel castings and forgings. G-9120 was engineered specifically to maximize productivity at moderate to heavy feed rates and high depths of cut, making it ideal for heavy-turning applications in steel. **G-920** A PVD-coated grade for light-to-medium turning of heat-resistant alloys and some stainless steels. It is also an excellent grade for aluminum and refractory metals. Given its resistance to deformation and notching, G-920 should be applied at higher speeds and is well-suited for grooving and finish-turning of HRSA. **G-9230** A PVD-coated grade designed for the machining of heat-resistant alloys, titanium, hardened steels and stainless steels. G-9230 works particularly well in stainless steel turning, interrupted turning of HRSA, and interrupted turning of titanium. G-9230 has superior wear resistance and toughness and is excellent for casting and forging scale conditions. **G-925** A high-performance multi-layer PVD-coated grade, G-925 is specifically designed for turning abrasive and difficult-to-machine materials. Typical applications include turning of HRSA, titanium and other refractory metals, stainless steels, and ductile cast irons. G-925 exhibits excellent resistance to notching and deformation. Apply at moderate to high speeds and moderate feeds. **G-935** A multi-layer PVD-coated grade for steel milling and turning applications requiring additional resistance to mechanical and thermal shock. The multi-layered PVD coating raises the speed envelope and wear resistance in tough milling, indexable drilling, and interrupted turning applications. **G-9610** A PVD-coated grade, G-9610 is designed for turning titanium-based alloys. The high-tech, wear-resistant, chemically stable, and very smooth and lubricious coating protects the heat-resistant, sub-micron substrate and allows for higher speeds and extended tool life in continuous cuts in non-ferrous alloys. #### **Uncoated** **G-01** Developed for milling heat-resistant alloys, stainless steel, and low-carbon steels at low speeds and moderate to high feeds, G-01 can also be used for turning in the same range of materials with severe interruption or old machinery. **G-01M** A tough sub-micron grade, G-01M is used for milling and rough turning stainless steels— even when rolling or casting skin is present. The edge strength of G-01M allows the use of sharp edges and high positive rakes in continuous or interrupted cuts. **G-10** Used for roughing all cast irons in severe conditions, including broaching. The edge strength of G-10 makes it a great choice for roughing Ni-, Co-, and Ti-based alloys with positive rakes, and any machining of non-ferrous materials when toughness is of prime importance. Apply at moderate speeds and feeds. **G-02** An excellent general-purpose cast-iron grade, G-02 can be used for milling and turning cast iron at moderately high speeds and medium feeds. G-02 is also a good choice for machining aluminum with positive rakes and light roughing of some heat-resistant alloys and stainless steels... **G-20M** A sub-micron C-2 carbide grade suited for use in light-to-medium turning of titanium and heat-resistant super alloys, G-20M has the strength and edge wear characteristics to resist notching when turning high-strength materials. **G-23** G-23 is a finishing grade for all cast irons, and other short-chipping non-ferrous materials, such as brass and bronze. Apply G-23 at moderately high speeds and moderate feed rates. **G-40** Used for finish turning of cast iron and other hardwearing materials at high speeds and light feeds in stable conditions.
G-50 Used for the heavy roughing of steel and steel castings in unstable conditions, and ferritic stainless steels in most applications, G-50 is tough enough to enable the use of positive rakes in turning. **G-53** An excellent general-purpose milling grade for steels at moderate speeds and feeds. G-53 has a good combination of toughness and wear resistance for milling, or can be used as an all-around grade for mixed-production applications. **G-60** Used for the heavy rough turning of steel, steel castings, and steel forgings. Apply G-60 at moderate speeds and heavy feed rates and depths of cut. G-60 is more wear-resistant than G-50 but is lower in toughness. **G-74** A roughing and finishing grade for steel and steel castings, G-74 should be applied at high speeds and moderate to heavy feeds. It is well-suited for the turning of steel rolls. ### **Insert Grade Reference** Carbide for Turning, Grooving, and Profiling ## Insert Grade Reference Carbide for Milling ## **Carbide Grade Machining**Recommendations for Turning — Cutting Speed, SFM | | | | | MT-CVD | | | | | PVD | | | |----------|--------------|---------------------|-------|-------------------|--------|--------|--------|-------------|-------------------|-------|-------------| | | Туре | Common Alloys | HRc | < Wear Resistance | | | | Toughness > | < Wear Resistance | | Toughness > | | <u>6</u> | <i>"</i> | , | | GA5026 | GA5025 | G5125+ | GA5035 | GA5125 | G-9120 | G-935 | G-915 | | - | Soft Steel | A36,1018, 8620,1045 | < 25 | 1000 | 900 | 900 | 800 | 700 | 750 | 650 | 600 | | Stee | Alloy Steels | 4340, 4140 | 20-25 | 800 | 725 | 725 | 650 | 550 | 600 | 525 | 500 | | | Tool Steels | A2, D2, S7 | < 25 | 650 | 600 | 600 | 525 | 475 | 500 | 450 | 450 | | | Die Steels | H13, P20 | < 25 | 650 | 600 | 600 | 525 | 475 | 500 | 450 | 450 | | | | | | | | Unco | ated | | MT-CVD | | PI | /D | | |-----------------|------------------|---------------------------|-----------------------------------|-------|-----------------|------|-------|-------------|--------|-----------------|-------|--------|-------------| | | Type | Matrix | Common Alloys | HRc | < Wear Resistan | ce | | Toughness > | | < Wear Resistar | псе | | Toughness > | | | | | ŕ | | G-20M | G-23 | G-01M | G-10, G-02 | GA5026 | G-925 | G-920 | G-9230 | G-915 | | | Ferritic | Ferrite | Annealed 400 series | 0-25 | 310 | 310 | 310 | 310 | 855 | 690 | 575 | 675 | 590 | | | | | (430, 409, 410, 439, | | | | | | | | | | | | | | | 441, 434) | | | | | | | | | | | | | Austenitic | Austenite | 300 series (301, 303, 304, | 0-25 | 260 | 260 | 260 | 260 | 705 | 575 | 475 | 560 | 490 | | | | | 304L, 309, 310, 316, 316L, | | | | | | | | | | | | | | | 316Ti, 321), | | | | | | | | | | | | (W) | | | 200 series (201, 202, 204Cu, 205) | | | | | | | | | | | | | Super-austenitic | Austenite | S31266, 904L, N08031, | 0-25 | 150 | 165 | 165 | 165 | 425 | 345 | 280 | 330 | 295 | | tee | | | S34565, N08926, S31254, | | | | | | | | | | | | S S | | | N0828, S32654, 1.4588 | | | | | | | | | | | | Stainless Steel | Duplex | Ferrite + Austenite | F51 (1.4462), F53 (1.4410), | 0-25 | 180 | 180 | 180 | 180 | 490 | 410 | 330 | 395 | 345 | | Sta | | | F55 (1.4501), | | | | | | | | | | | | | | | 255 (1.4507), CD3MN | | | | | | | | | | | | | Martensitic | Plate martensite (high-C) | Quenched and tempered | 30 | 295 | 295 | 295 | 295 | 770 | 640 | 525 | 605 | 540 | | | | | 400 series | 40 | 260 | 260 | 260 | 260 | 705 | 575 | 475 | 560 | 490 | | | | | (416, 410, 420, 431) | | | | | | | | | | | | | | Lath martensite (low-C) | Jethete M152 | 35 | 150 | 150 | 150 | 150 | 395 | 330 | 260 | 310 | 280 | | | PH | Austenite and/or | A286, PH14-8Mo, | 0-25 | 165 | 165 | 165 | 165 | 445 | 360 | 295 | 345 | 310 | | | | Lath Martensite | PH15-7Mo, 15-5PH, | 35 | 150 | 150 | 150 | 150 | 395 | 330 | 260 | 310 | 280 | | | | | 15-7PH, 17-4PH, | 40-45 | 130 | 130 | 130 | 130 | 360 | 295 | 230 | 280 | 245 | | | | | 17-7PH | | | | | | | | | | | | | | | | Uncoated | MT-CVD | | PVD | |----------|---------------------|--------------------------|-------|----------|-------------------|-------------|-------| | | Туре | Common Alloys | HRc | | < Wear Resistance | Toughness > | | | | | | | G-02 | GA5026 | GA5023 | G-915 | | | Lamellar (Grey) | GG15, GG25, GG35 | < 32 | 450 | 1150 | 1000 | 600 | | | Cast Iron | (EN-GJL-150, EN-GJL-250, | | | | | | | X | | EN-GJL-350) | | | | | | | _ | Nodular (Ductile) | GGG40 (EN-GJS-400) | < 28 | 360 | 920 | 800 | 600 | | ast Iron | Cast Iron | GGG60 (EN-GJS-600) | < 28 | 305 | 780 | 680 | 510 | | Cast | | GGG80 (EN-GJS-800) | 30-35 | 250 | 645 | 560 | 420 | | | Compacted | EN-GJV-300 EN-GJV-500 | < 28 | 235 | 605 | 525 | 425 | | | Graphite Iron (CGI) | | | | | | | | | Austempered Ductile | 800 (EN-GJS-800-10 | 25-30 | 270 | 690 | 600 | 450 | | | Iron (ADI) | 1200 (EN-GS-1200-3) | 35-40 | 205 | 520 | 450 | 337.5 | | | | 1600 (EN-GJS-HB450) | ≥ 47 | 120 | 310 | 270 | 202.5 | ## **Carbide Grade Machining**Recommendations for Turning — Cutting Speed, SFM | 2 | Туре | | Uncoated | | MT- | CVD | PVD | | | | | |--------------|-----------------------|-------------------|----------|-------------|-------------------|-------------|-------------------|-------|--------|-------------|--| |) s | | < Wear Resistance | | Toughness > | < Wear Resistance | Toughness > | < Wear Resistance | | | Toughness > | | | irrou | | G-20M | G-02 | G-01 | GA5026 | GA5023 | G-9610 | G-920 | G-9230 | G-915 | | | n-Fe | Aluminum Alloys | 1250 | 900 | 750 | - | - | 2000 | 1800 | 1650 | 1650 | | | 2 | Brass, Copper, Bronze | 400 | 300 | 250 | 650 | 500 | 650 | 600 | 550 | 550 | | | | | | | | | Unco | ated | | MT-CVD | | | PVD | | | |----------------------|---------------------|---------------------------|--|-------|----------------|------|-------|-------------|--------|----------------|-------|-------|--------|-------------| | | Type | Type Matrix Common Alloys | | HRc | < Wear Resista | nce | | Toughness > | | < Wear Resista | nce | | | Toughness > | | | | | | | G-20M | G-23 | G-01M | G-10, G-02 | GA5026 | G-9610 | G-925 | G-920 | G-9230 | G-915 | | | Corrosion-Resistant | Nickel or iron | Inconel 625, Incoloy 825, Hastelloy, Monel | - | 115 | 100 | 100 | 100 | 280 | 245 | 230 | 180 | 215 | 195 | | | High-Strength | Nickel or cobalt | Inconel 718, Rene 220, C-263, | 0-25 | 115 | 100 | 100 | 100 | 280 | 245 | 230 | 180 | 215 | 195 | | | | | Haynes 188, Haynes 282, FSX-414 | 35 | 100 | 80 | 80 | 80 | 260 | 215 | 195 | 165 | 180 | 165 | | (S) | | | | 40-45 | 80 | 65 | 65 | 65 | 215 | 195 | 180 | 150 | 165 | 150 | | S, | | | | 45-50 | 80 | 65 | 65 | 65 | 195 | 180 | 165 | 130 | 150 | 150 | | Alloys | | | | 50+ | 65 | 50 | 50 | 50 | 165 | 150 | 130 | 100 | 115 | 115 | | er / | | Nickel | Waspaloy, RR1000, Rene 41-125, | 0-25 | 100 | 80 | 80 | 80 | 260 | 215 | 195 | 165 | 180 | 165 | | Sup | | | Udimet, GTD111-444, MM-247, C1023, | 35 | 80 | 65 | 65 | 65 | 215 | 195 | 180 | 150 | 165 | 150 | | ant | | | IN100 | 40-45 | 80 | 65 | 65 | 65 | 165 | 180 | 165 | 130 | 150 | 150 | | sist | | | | 45-50 | 65 | 50 | 50 | 50 | 130 | 150 | 130 | 100 | 115 | 115 | | Heat-Resistant Super | | | | 50+ | 50 | 35 | 35 | 35 | 130 | 130 | 115 | 100 | 100 | 100 | | Hea | Wear-resistant | Nickel or cobalt | Stellite, Eutalloy, Metco, Wall | 20 | 100 | 80 | 80 | 80 | 280 | 245 | 230 | 180 | 215 | 195 | | | | | Colmonoy, Weartech | 40 | 50 | 35 | 35 | 35 | 165 | 150 | 130 | 100 | 115 | 115 | | | Titanium | Alpha Ti | Commercially pure, grades 1-4 | - | 165 | 130 | 130 | 130 | - | 330 | 295 | 230 | 280 | 260 | | | | | Ti-5Al2Sn, Ti-8Al1Mo1V | - | 150 | 115 | 115 | 115 | - | 295 | 260 | 215 | 245 | 230 | | | | | Ti-5522, Ti-834, Ti-6242, Ti-6246, Ti 1100 | - | 130 | 100 | 100 | 100 | - | 260 | 230 | 180 | 215 | 195 | | | | Alpha+Beta Ti | Ti-6Al4V, Ti-6Al6V2Sn, Ti-6Al7Nb | - | 100 | 65 | 65 | 65 | - | 230 | 195 | 165 | 180 | 165 | | | | Beta Ti | Ti-17, Ti-5553, Ti-10V2Fe3Al, Ti-8823 | - | 65 | 50 | 50 | 50 | _ | 195 | 165 | 130 | 150 | 150 | | | | | | | | | PVD | | | | | |----------|--------------|------------------|-------|-------------------|--------|--------|--------|--------|-------------|-------------------|-------------| | | Туре | Common Alloys | HRc | < Wear Resistance | | | | | Toughness > | < Wear Resistance | Toughness > | | \equiv | | | | GA5026 | GA5025 | G5125+ | GA5035 | GA5125 | G-5135 | G-9120 | G-915 | | le le | Alloy Steels | 4340, 4140, 2550 | 45-50 | 405 | 360 | 405 | 360 | 360 | 315 | 315 | 270 | | St | | | 50-55 | 315 | 280 | 315 | 280 | 280 | 245 | 245 | 210 | | enec | Tool Steels | D2, M4, S7, A2 | 45-50 | 315 | 270 | 315 | 270 | 270 | 225 | 225 | 180 | | arde | | | 50-55 | 245 | 210 | 245 | 210 | 210 | 175 | 175 | 140 | | 至 | Die Steels | H13, P20 | 45-50 | 405 | 360 | 405 | 360 | 360 | 315 | 315 | 270 | | | | | 50-55 | 315 | 280 | 315 | 280 | 280 | 245 | 245 | 210 | ## **Carbide Grade Machining**Recommendations for Milling — Cutting Speed, SFM | | | | | MT-CVD | | | PVD | | | |----------|--------------|---------------------|-------|--------|-------------------|-------|-------------|-------|--| | | Туре | Common Alloys | HRc | | < Wear Resistance | | Toughness > | | | | <u>@</u> | " | <u> </u> | | GA5036 | G-9120 | G-925 | G-935 | G-915 | | | - | Soft Steel | A36,1018, 8620,1045 | < 25 | 800 | 1000 | 825 | 825 | 750 | | | Ste | Alloy Steels | 4340, 4140 | 20-25 | 650 | 850 | 700 | 700 | 625 | | | | Tool Steels | A2, D2, S7 | < 25 | 600 | 700 | 625 | 625 | 575 | | | | Die Steels | H13, P20 | < 25 | 600 | 700 | 625 | 625 | 575 | | | | | | | | | Unco | ated | | MT-CVD | | P | /D | | |-----------------|------------------|---------------------------|-----------------------------------|-------|-------------------|------|-------|-------------|--------|------------------|-------|--------|-------------| | | Туре | Matrix | Common Alloys | HRc | < Wear Resistance | 2 | | Toughness > | | < Wear Resistanc | re e | |
Toughness > | | | | | ŕ | | G-20M | G-23 | G-01M | G-10, G-02 | GA5026 | G-925 | G-920 | G-9230 | G-915 | | | Ferritic | Ferrite | Annealed 400 series | 0-25 | 410 | 360 | 360 | 360 | 1000 | 855 | 675 | 820 | 690 | | | | | (430, 409, 410, 439, | | | | | | | | | | | | | | | 441, 434) | | | | | | | | | | | | | Austenitic | Austenite | 300 series (301, 303, 304, | 0-25 | 345 | 295 | 295 | 295 | 835 | 705 | 560 | 690 | 575 | | | | | 304L, 309, 310, 316, 316L, | | | | | | | | | | | | | | | 316Ti, 321), | | | | | | | | | | | | (W | | | 200 series (201, 202, 204Cu, 205) | | | | | | | | | | | | | Super-austenitic | Austenite | S31266, 904L, N08031, | 0-25 | 215 | 180 | 180 | 180 | 510 | 425 | 330 | 410 | 345 | | tee | | | S34565, N08926, S31254, | | | | | | | | | | | | S S | | | N0828, S32654, 1.4588 | | | | | | | | | | | | Stainless Steel | Duplex | Ferrite + Austenite | F51 (1.4462), F53 (1.4410), | 0-25 | 245 | 215 | 215 | 215 | 590 | 490 | 395 | 475 | 410 | | Sta | | | F55 (1.4501), | | | | | | | | | | | | | | | 255 (1.4507), CD3MN | | | | | | | | | | | | | Martensitic | Plate martensite (high-C) | Quenched and tempered | 30 | 375 | 330 | 330 | 330 | 920 | 770 | 605 | 755 | 640 | | | | | 400 series | 40 | 345 | 295 | 295 | 295 | 835 | 705 | 560 | 690 | 575 | | | | | (416, 410, 420, 431) | | | | | | | | | | | | | | Lath martensite (low-C) | Jethete M152 | 35 | 195 | 165 | 165 | 165 | 475 | 395 | 310 | 375 | 330 | | | PH | Austenite and/or | A286, PH14-8Mo, | 0-25 | 215 | 180 | 180 | 180 | 525 | 445 | 345 | 425 | 360 | | | | Lath Martensite | PH15-7Mo, 15-5PH, | 35 | 195 | 165 | 165 | 165 | 475 | 395 | 310 | 375 | 330 | | | | | 15-7PH, 17-4PH, | 40-45 | 165 | 150 | 150 | 150 | 425 | 360 | 280 | 345 | 295 | | | | | 17-7PH | | | | | | | | | | | | | Type | Common Alloys | HRc | MT-CVD | PVD | |-----------|---------------------|--------------------------|-------|--------|-------| | | .,,,,, | Common Amoys | | GA5023 | G-915 | | | Lamellar (Grey) | GG15, GG25, GG35 | < 32 | 1250 | 750 | | | Cast Iron | (EN-GJL-150, EN-GJL-250, | | | | | B | | EN-GJL-350) | | | | | _ | Nodular (Ductile) | GGG40 (EN-GJS-400) | < 28 | 1000 | 750 | | Cast Iron | Cast Iron | GGG60 (EN-GJS-600) | < 28 | 850 | 640 | | Cast | | GGG80 (EN-GJS-800) | 30-35 | 700 | 525 | | | Compacted | EN-GJV-300 EN-GJV-500 | < 28 | 655 | 530 | | | Graphite Iron (CGI) | | | | | | | Austempered Ductile | 800 (EN-GJS-800-10 | 25-30 | 750 | 565 | | | Iron (ADI) | 1200 (EN-GS-1200-3) | 35-40 | 565 | 420 | | | | 1600 (EN-GJS-HB450) | ≥ 47 | 340 | 255 | ## **Carbide Grade Machining**Recommendations for Milling — Cutting Speed, SFM | 2 | | Uncoated | PVD | | | | | | |--------|-----------------------|----------|-------------------|-------------|--|--|--|--| | | Туре | | < Wear Resistance | Toughness > | | | | | | errous | ,, | G-01M | G-9230 | G-915 | | | | | | n-Fe | Aluminum Alloys | 1200 | 2000 | 2000 | | | | | | 2 | Brass, Copper, Bronze | 400 | 650 | 665 | | | | | | | | | | | | Unco | ated | | MT-CVD | | | PVD | | | | |----------------|---------------------|--------------------------|--|-------|----------------|------|-------|-------------|--------|----------------|-------|-------|--------|-------------|--| | | Туре | ype Matrix Common Alloys | | HRc | < Wear Resista | nce | | Toughness > | | < Wear Resista | ince | | | Toughness > | | | | | | | | G-20M | G-23 | G-01M | G-10, G-02 | GA5026 | G-9610 | G-925 | G-920 | G-9230 | G-915 | | | | Corrosion-Resistant | Nickel or iron | Inconel 625, Incoloy 825, Hastelloy, Monel | ı | 130 | 115 | 115 | 115 | 330 | 295 | 280 | 215 | 260 | 230 | | | | High-Strength | Nickel or cobalt | Inconel 718, Rene 220, C-263, | 0-25 | 130 | 115 | 115 | 115 | 330 | 295 | 280 | 215 | 260 | 230 | | | | | | Haynes 188, Haynes 282, FSX-414 | 35 | 115 | 100 | 100 | 100 | 310 | 260 | 230 | 195 | 215 | 195 | | | (S) | | | | 40-45 | 100 | 80 | 80 | 80 | 260 | 230 | 215 | 180 | 195 | 180 | | | S | | | | 45-50 | 100 | 80 | 80 | 80 | 230 | 215 | 195 | 165 | 180 | 180 | | | Alloys | | | | 50+ | 80 | 65 | 65 | 65 | 195 | 180 | 165 | 115 | 130 | 130 | | | er / | | Nickel | Waspaloy, RR1000, Rene 41-125, | 0-25 | 115 | 100 | 100 | 100 | 310 | 260 | 230 | 195 | 215 | 195 | | | Super | | | Udimet, GTD111-444, MM-247, C1023, | 35 | 100 | 80 | 80 | 80 | 260 | 230 | 215 | 180 | 195 | 180 | | | ant | | | IN100 | 40-45 | 100 | 80 | 80 | 80 | 195 | 215 | 195 | 165 | 180 | 180 | | | esist | | | | 45-50 | 80 | 65 | 65 | 65 | 165 | 180 | 165 | 115 | 130 | 130 | | | Heat-Resistant | | | | 50+ | 65 | 35 | 35 | 35 | 165 | 165 | 130 | 115 | 115 | 115 | | | Hea | Wear-resistant | Nickel or cobalt | Stellite, Eutalloy, Metco, Wall | 20 | 115 | 100 | 100 | 100 | 330 | 295 | 280 | 215 | 260 | 230 | | | | | | Colmonoy, Weartech | 40 | 65 | 35 | 35 | 35 | 195 | 180 | 165 | 115 | 130 | 130 | | | | Titanium | Alpha Ti | Commercially pure, grades 1-4 | - | 195 | 165 | 165 | 165 | - | 395 | 360 | 280 | 330 | 310 | | | | | | Ti-5Al2Sn, Ti-8Al1Mo1V | - | 180 | 130 | 130 | 130 | - | 360 | 310 | 260 | 295 | 280 | | | | | | Ti-5522, Ti-834, Ti-6242, Ti-6246, Ti 1100 | - | 165 | 115 | 115 | 115 | - | 310 | 280 | 215 | 260 | 230 | | | | | Alpha+Beta Ti | Ti-6Al4V, Ti-6Al6V2Sn, Ti-6Al7Nb | - | 115 | 80 | 80 | 80 | - | 280 | 230 | 195 | 215 | 195 | | | | | Beta Ti | Ti-17, Ti-5553, Ti-10V2Fe3Al, Ti-8823 | - | 80 | 65 | 65 | 65 | - | 230 | 195 | 165 | 180 | 180 | | | | | | | MT- | CVD | PVD | | | | | |-----|--------------|------------------|-------|-------------------|-------------|-------------------|-------------|-------|--|--| | | Type | Common Alloys | HRc | < Wear Resistance | Toughness > | < Wear Resistance | Toughness > | | | | | € | " | | | GA5036 | GA5125 | G-9230 | G-9120 | G-915 | | | | lee | Alloy Steels | 4340, 4140, 2550 | 45-50 | 405 | 360 | 405 | 360 | 360 | | | | ž | | | 50-55 | 315 | 280 | 315 | 280 | 280 | | | | ene | Tool Steels | D2, M4, S7, A2 | 45-50 | 315 | 270 | 315 | 270 | 270 | | | | ard | | | 50-55 | 245 | 210 | 245 | 210 | 210 | | | | == | Die Steels | H13, P20 | 45-50 | 405 | 360 | 405 | 360 | 360 | | | | | | | 50-55 | 315 | 280 | 315 | 280 | 280 | | | ## **Chipform Application Range** ### **Insert Grades** #### **Ceramic** Greenleaf is the industry leader in the development and manufacture of ceramic and coated ceramic inserts in ANSI standard and special geometries. Some of the most prominent include: #### WG-300[®] A SiC whisker-reinforced Al_2O_3 ceramic that is very effective at machining nickel- and cobalt-based super alloys, alloyed cast iron, and hardened steels at metal removal rates up to 10 times higher than carbide. Excellent chemical stability and wear resistance at very high cutting speeds make WG-300° the first choice worldwide for grooving and turning difficult materials. #### WG-600® A coated SiC whisker-reinforced Al₂O₃ ceramic that offers higher tool life and speed capabilities than uncoated whisker-reinforced ceramics due to the additional barrier to heat and mechanical abrasion. Application areas for WG-600° include rough and finish turning of alloys in the M, K, S, and H ISO material classes, as well as milling of hardened steels and select stainless steels. WG-600° is particularly well-suited for finish-turning and grooving of heat-resistant super alloys and is unmatched in both turning and milling of steels with a hardness above 60 HRc. #### WG-700™ A SiC whisker-reinforced Al₂O₃ ceramic featuring improved toughness and a unique low-friction coating. WG-700™ is ideal for turning, grooving, and profiling nickel- and cobalt-based super alloys that other ceramics may struggle in. WG-700™ exhibits exceptional tool life and productivity in next-generation formulations or novel heat treatments of heat-resistant super alloys, and long-reach or thin-walled applications with lower rigidity. #### XSYTIN®-1 A phase-toughened ceramic grade capable of sustaining extreme cutting forces. The unprecedented strength, impact toughness, and resistance to thermal shock of XSYTIN®-1 make it ideal for use in interrupted cuts, forging scale removal, and milling. In continuous cuts, the strength of XSYTIN®-1 allows the use of significantly higher feed rates or depths of cut. In machining environments with severe interruptions and scale, the edge strength of XSYTIN®-1 allows the use of very light edge preparations, minimizing the force of impact and making for a much smoother cut. #### GSN100™ An engineered blend of hot-pressed silicon nitride and proprietary toughening agents that excels in the machining of cast iron. GSN100™ delivers superior wear and toughness for turning, grooving, and milling applications. It is available in all standard geometries and engineered specials. #### GEM-8™ An Al_2O_3 + TiC composite ceramic exhibiting excellent hardness and strength at elevated temperatures. GEM-8^{tot} offers a high degree of predictability in roll turning and continuous cuts in ferrous alloys. ## Insert Grade Reference Ceramic for Turning, Grooving, and Profiling ## Insert Grade Reference Ceramic for Milling ## Steel Roll Turning with GEM-8™ $Note: for \ more \ recommendations \ on \ Cutting \ Speed \ and \ Chip \ Thickness \ in \ turning, see \ chart \ on \ ATI49.$ ## Cast Iron Roll Turning with GEM-8™ Note: for more recommendations on Cutting Speed and Chip Thickness in turning, see chart on AT149. ## **Turning Hardened Steel**with GEM-8™/Whisker-Reinforced Ceramics/XSYTIN®-1 Note: for more recommendations on Cutting Speed and Chip Thickness in turning, see chart on AT149. ## **Milling Hardened Steel**with Whisker-Reinforced Ceramics/XSYTIN®-1 Note: for more recommendations on Cutting Speed and Chip Thickness in milling, see chart on ATI74. ## Machining Cast Iron with GSN100™ Note: for Chip Thickness recommendations, see charts on ATI49 and ATI74. # **Edge Preparations and Application Guide** | Edge
Prep | Hone | Primary
Land | Primary
Angle | Secondary
Land | Secondary
Angle | Application |
--------------|--------------|-----------------|------------------|-------------------|--------------------|---| | A | .0005001" R. | | | | | Light hone added to designated lands and chipforms GEM-8™ – Grooving of grey and nodular cast iron WG-300°, WG-600°, and WG-700™ – Finish turning and grooving of HRSA GSN100™ – Grooving of grey, nodular, and CGI cast iron XSYTIN°-1 – General-purpose milling of HRSA, hardened steel, and maraging steel | | В | .001002" R. | | | | | Large hone used in conjunction with heavy machining chamfers and designated negative lands. Applied where more edge strength and protection from irregular wear is required over A-hone. | | т1 | | .002004" | 20° | | | WG-300°, WG-600°, and WG-700™ – General-purpose turning of clean HRSA and steel below 50 HRC XSYTIN°-1 – General-purpose turning and milling of HRSA (especially of a higher hardness) and hardened steel | | T1A | .0005001" R. | .002004" | 20° | | | GEM-8™ — Finish-turning of grey and nodular cast iron or hardened steel WG-300°, WG-600°, and WG-700™ — Light-medium turning and milling of hardened steel, lightly interrupted turning and turning of scale in HRSA, milling HRSA, general-purpose turning and milling of stainless steel XSYTIN°-1 — Same applications as T1 where the interruption or hardness gradient and size of hard particles are greater - particularly heavy HRSA forging scale turning | | T2 | | .006008" | 20° | | | Used in the same applications as T1 but at heavier depths of cut and/or heavier feed rates • WG-300°, WG-600°, and WG-700™ — Grey and nodular cast iron turning • GSN100™ — General purpose grey, nodular, and CGI cast iron milling | | T2A | .0005001" R. | .006008" | 20° | | | GEM-8™ – Light-medium turning of grey and nodular cast iron or hardened steel WG-300°, WG-600°, and WG-700™ — Grey and nodular cast iron milling, milling of hardened steel, heavy HRSA forging scale turning GSN100™ — Same applications as T2 where more edge strength and protection from irregular wear is required XSYTIN°-1 — General-purpose cast iron (including white cast iron, ADI, CGI) turning and milling | # Edge Preparations and Application Guide (Continued) | Edge
Prep | Hone | Primary
Land | Primary
Angle | Secondary
Land | Secondary
Angle | Application | |--------------|--------------|-----------------|------------------|-------------------|--------------------|--| | ТЗ | | .013015" | 30° | | | Used on smaller IC inserts as an alternative to T7 | | ТЗА | .0005001" R. | .013015" | 30° | | | Used on smaller IC inserts as an alternative to T7A | | T4A | .0005001" R. | 0.55 0.75" | 400 | | 250 | GEM-8™ — Medium turning of roll materials and hardened steel WG-300°, WG-600°, and WG-700™ — Medium-rough continuous-interrupted turning of | | T4B | .001002" R. | .065075" | 10° | .006008" | 25° | hardened steel and roll materials • XSYTIN®-1 — Rough turning of roll materials | | T5A | .0005001" R. | 050 06011 | 150 | 010 015 | 200 | Same applications as T4A/B where more edge strength and protection from irregular wear is required | | T5B | .001002" R. | .050060" | 15° | .010015" | 30° | same applications as 14476 where more edge strength and protection from megular wear is required | | T6A | .0005001" R. | 050 060 | 20° | 010 015 | 30° | Same applications as T5A/B where more edge strength and protection from irregular wear is required | | T6B | .001002" R. | .050060" | 20° | .010015" | 30" | Same applications as 13A/D where more edge strength and protection nonlinegular wear is required | | Т7 | | .015020″ | 20° | | | WG-300°, WG-600°, and WG-700™ — Heavy turning or milling of cast iron or rough turning of particularly abrasive (high Ti, Al) HRSA GSN100™ — Heavy turning or milling of grey, nodular, and CGI cast iron XSYTIN°-1 — Heavy turning or milling of cast iron or rough turning of particularly abrasive (high Ti, Al) HRSA | | T7A | 0005001" R. | .015020" | 20° | | | GEM-8™ – Medium-rough turning of grey and nodular cast iron. GSN100™ – Same applications as T7 where more edge strength and protection from irregular wear is required | | Т9 | | .006008" | 30° | | | For use with higher feed rates in the same applications as T7 | | T9A | 0005001" R. | .006008" | 30° | | | Same applications as T9 where more edge strength and protection from irregular wear is required | | T10A | 0005001" R. | | | | | • GEM-8™ — Rough turning of white cast iron and roll materials | | T10B | .001002" R. | .090100″ | 15° | .006008" | 30° | WG-300°, WG-600°, and WG-700™ — Rough, continuous-interrupted turning of roll materials | # Formulas for Turning and Facing #### **Imperial** #### **Turning** $$SFM = \underbrace{\frac{\text{Dia. } x \, \pi \, x \, RPM}{12}}_{12} \qquad \qquad RPM = \underbrace{\frac{SFM \, x \, 12}{\text{Dia. } x \, \pi}}_{Dia. \, x \, \pi}$$ $$T = \underbrace{\frac{\text{LOC}}{\text{IPR } x \, RPM}}_{Dia. \, x \, RPM} \qquad \text{LOC Da to Db} = \underbrace{\frac{SFM \, x \, 12 \, x \, IPR \, x \, T}{\text{Dia. } x \, \pi}}_{Dia. \, x \, \pi}$$ #### **Facing** To calculate the time (T) for a facing operation from starting point (Da) to finishing point (db): Time Da to db = $$\frac{\pi (Da^2-db^2)}{48 \text{ x SFM x IPR}}$$ To calculate the endpoint (db) for facing from starting point (Da) to finishing point (db): $$db = \sqrt{Da^2 - (15.279 \text{ x T x SFM x IPR})}$$ If db is minus, you have passed center. SFM = Surface Speed (feet/minute) IPR = Feed Rate (inches/revolution) LOC = Length of cut (inches) T = Time (min.) π = 3.1416 D = Large Diameter (inches) d = Small Diameter (inches) 15.279 = 48 Note: The constant speed capabilities of the lathe are assumed in the above facing calculations. #### Metric #### **Turning** $$V = \frac{\text{Dia.} \ x \ \pi \ x \ \text{RPM}}{1000} \qquad \qquad \text{RPM} = \frac{V \ x \ 1000}{\text{Dia.} \ x \ \pi}$$ $$T = \frac{\text{LOC}}{\text{S} \ x \ \text{RPM}} \qquad \qquad \text{LOC Da to Db} = \frac{V \ x \ 1000 \ x \ S \ x \ T}{\text{Dia.} \ x \ \pi}$$ #### Facing To calculate the time (T) for a facing operation from starting point (Da) to finishing point (db): Time Da to db = $$\frac{\pi (Da^2-db^2)}{4000 \times V \times S}$$ To calculate the endpoint (db) for facing from starting point (Da) to finishing point (db): $$db = \sqrt{Da^1 - (1273, 2 \times T \times V \times S)}$$ If db is minus, you have passed center. $\begin{array}{lll} V & = Surface \: Speed \: (meters/minute) \\ S & = Feed \: Rate \: (mm/revolution) \\ LOC & = Length \: of \: cut \: (mm) \\ T & = Time \: (min.) \\ \pi & = 3.1416 \\ D & = Large \: Diameter \: (mm) \\ d & = Small \: Diameter \: (mm) \\ 1273,2 & = \underline{4000} \end{array}$ Note: The constant speed capabilities of the lathe are assumed in the above facing calculations. # **Optional Clamps** To give maximum flexibility and provide for maximum clamping advantage in any given cutting situation, there are alternative clamps available. The variation in these clamps is the reach. Barrel diameters are common. A typical example of alternate clamp usage would be in holding an insert without a hole. In this case, the lock pin would be removed and the clamp substituted so that maximum top clamping capability may be applied. We have chosen as standard for each tool cataloged a clamp and differential screw combination for use with inserts with holes (pinlock). A longer reach clamp should be used when using top clamp alone. If conditions indicate, another combination would be advantageous. Please note as follows: - Clamps CL-6, CL-7 and CL-19 are interchangeable. The difference is in the reach only. - CL-9, CL-12 and CL-30 are all interchangeable, the difference being in the reach only. - CL-20 and CL-22 are interchangeable, the difference being in the reach only. Barrel diameters "B" and thread sizes are common. The reach "C", height "D", and "E" and "G" dimensions may be different. It is very important that sufficient clearance exist in the toolholder for the clamp to drop down far enough into the holder to attain clamping action on the insert. **Clamp Interchangeability** | TIDEAD | Order
Number | В | С | D | E | G | Thread | |---------------------------------------|-----------------|------|-------|------|------|------|---------| | THREAD | CL-5 | .280 | .520 | .350 | .102 | _ | 10-32 | | | CL-6 | .310 | .580 | .440 | .187 | .094 | 10-32 | | | CL-7 | .310 | .640 | .310 | .062 | - | 10-32 | | • • D | CL-19 | .310 | .550 | .310 | .062 | - | 10-32 | | E + | CL-9 | .430 | .750 | .660 | .344 | .125 | 5/16-24 | | · · · · · · · · · · · · · · · · · · · | CL-12 | .430 | .880 | .660 | .344 | .125 | 5/16-24 | | | CL-30 | .430 | 1.000 | .660 | .344 | .125 | 5/16-24 | | B _{DIA.} | CL-20 | .375 | .730 | .380 | .125 | - | 1/4-28 | | DIA. | CL-22 | .375 | .850 | .380 | .125 | _ | 1/4-28 | | | CL-24 | .491 | 1.000 | .785 | .453 | .136 | 3/8-24 | # **Greenleaf Advanced Ceramics** # Index | | Page | |---|--------------------| | Glossary | ATI 29 | | What are Greenleaf ceramic cutting tools? | ATI 30-31 | | Applying Greenleaf Ceramics | ATI 32 | | Application Guidelines | ATI 32 |
 Tool-Holding Selection | ATI 33 | | Insert Strength | ATI 34 | | Edge Preparations | ATI 35 | | Material Classification and Tool Selection | ATI 37 | | Heat-Resistant Super Alloys (S) | ATI 37 | | Hardened steel (H) | ATI 39 | | Cast Iron (K) | ATI 43 | | Stainless Steel (M) | ATI 46 | | Chip Formation | ATI 48 | | Chip Thickness | ATI 48 | | Ceramic Wear Patterns | ATI 51 | | Machining Strategy: Continuous and Lightly Interrupted Cu | ı ts ATI 54 | | Material-Independent Guidelines | ATI 54 | | Rake Angles and Clearance | ATI 54 | | Mechanical Stresses | ATI 55 | | Heat Distribution | ATI 57 | | Cutting Tool Material Properties | ATI 57 | | Material-Specific Guidelines | ATI 58 | | Heat-Resistant Super Alloys (S) | ATI 58 | | Forging Scale Removal | ATI 58 | | Roughing: Straight Cuts | ATI 58 | | Whisker-Reinforced Ceramics | ATI 58 | | XSYTIN®-1 | ATI 62 | | Roughing: Opening Cavities | ATI 62 | | Grooving | ATI 63 | | | Page | |--|--------| | Grooving and Profiling | ATI 63 | | Profiling | ATI 64 | | Whisker-Reinforced Ceramics | ATI 64 | | XSYTIN®-1 | ATI 64 | | Radial Engagement a.k.a. Wraparound | ATI 65 | | Semi-Finishing | ATI 65 | | Fillets and Shoulders | ATI 65 | | Corners in a Cavity | ATI 66 | | Finishing | ATI 66 | | WG-600 [®] | ATI 67 | | GF-1 | ATI 67 | | Thin-Walled Components | ATI 68 | | Test Ring Production | ATI 69 | | Coolant | ATI 69 | | Stainless Steel (M) | ATI 70 | | Hardened Steel (H) | ATI 70 | | Cast Iron (K) | ATI 71 | | Machining Strategy: Interrupted Cuts and Milling | ATI 72 | | Interrupted Turning | ATI 72 | | Whisker-Reinforced Ceramics | ATI 72 | | XSYTIN®-1 | ATI 72 | | Milling | ATI 73 | | Material-Independent Guidelines | ATI 73 | | Material-Specific Guidelines | ATI 74 | | Extended Material Guide | ATI 76 | | Heat-Resistant Super Alloys (S) | ATI 76 | | Hardened steel (H) | ATI 77 | | Cast Iron (K) | ATI 77 | | Stainless Steel (M) | ATI 78 | # **Glossary** | Engineering stress | The state of being loaded in a | particular direction, accom | npanied by deformation | on a.k.a. strain. | |-----------------------------------|---|---|--|---| | | | | | | | | Tension | Compression | Shear Different types of | Bending Torsion mechanical stress EN — Creator: MikeRun https://creativecommons.org/licenses/by-sa/4.0/ | | Fracture Toughness | The resistance of a material to for a ceramic cutting tool in a | crack growth. The single b
continuous cut. | pest predictor of regul | arity of wear and tool life in general | | Oxidation
(v. Oxidize) | A mode of corrosion in which a in the deterioration of mechan | elements combine with ox
ical properties of a materi | ygen to create oxides
al. Rapid oxidation is | . Usually something to be avoided because it results also commonly referred to as 'being on fire.' | | Plasticization
(v. Plasticize) | The action of thermal softenin
lower forces to deform. | g. Most materials lose stre | ength and hardness w | ith increasing temperature, becoming more ductile and requiring | | Specific Cutting Energy | The energy required to form a | chip of unit volume. Varie | s with material and st | rain rate. | | Strain | Deformation. Can be elastic, in almost exclusively to denote the | which case the deformati
he degree of plastic deform | ion is recovered after in the state of s | the stress is removed, but in this guide, is used
, compressive, or shear. | | Strain Rate | The rate at which something is | s deformed. The change in | the magnitude of str | ain per unit of time. | | Transverse Rupture
Strength | Also known as "modulus of ru
just before it yields in a bendir | pture", "bend strength", o
ng test. | r "flexural strength". <i>i</i> | A material property, defined as the stress in a material | | WC-Co | Sintered tungsten carbide, cor
It is usually composed of a sub
as well as gradient sintering, e | strate and a coating, with | bide' — the most comr
substrates varying by | non and widely used cutting tool material.
grain size, % of Co as binder, and any added carbides (TiC, TaC), | # What are Greenleaf ceramic cutting tools? To answer this question thoroughly we need to start at the beginning — Greenleaf was born in the mid-1940s, as a manufacturer of indexable tungsten carbide and quickly evolved into a recognized toolmaker for the heavy machining industry. After being the first to bring CVD-coated carbide to the US market in 1969 Greenleaf started to develop ceramic cutting tools. Greenleaf's first commercially viable ceramic cutting tool - "GemPrest" was introduced in 1973 and constituted a hot-pressed ${\rm Al_2O_3}+{\rm TiC}$ composite. Hot-pressing binds the components of a ceramic cutting tool more strongly than cold-pressing and sintering, increasing its hot-hardness and transverse rupture strength. This method of manufacturing cutting tools, with all the intricacies that were developed and added in the intervening years, continues to set Greenleaf cutting tools apart from the rest regardless of their chemical makeup. Al_2O_3 in its pure form is a ceramic that is hard, non-reactive, and able to withstand compressive stresses at extreme temperatures, but is also rather brittle — so its uses are limited to a number of specific applications. Reinforcing Al_2O_3 with another material introduces impediments to stress flow, significantly altering its apparent properties. The result is a thermally conductive composite that is tougher, stronger and more resistant to crack growth. Titanium carbide (TiC) is a very hard ceramic with roughly spheroidal grains and so, mechanically, the reinforcement mechanism is not unlike the reinforcement of cement with gravel to create concrete. The energy a crack must have to go around a TiC grain does not vary significantly with the direction from which the crack approaches the grain. Adding TiC makes the Al₂O₃ matrix more resistant to abrasive wear and stronger in tension, and increases its fracture toughness without sacrificing too much of the original hot-hardness and compressive strength, making it a viable cutting tool. Naturally, much has changed between 1973 and now, and the viability of TiC-reinforced cutting tools especially when it comes to turning of hard, abrasive iron-based alloys has improved dramatically. As such, GEM-8™ shares little with GemPrest other than the most fundamental chemical constituents — Al,O, and TiC. Silicon carbide (SiC) is also a very hard material, but single grains can be grown to take the shape of elongated hexagonal prisms commonly referred to as 'whiskers' (SiC_w), which makes its reinforcement mechanism very different from that of TiC — closer to the reinforcement of concrete with rebar. Adding SiC_w transforms Al $_2$ O $_3$ to a much greater extent and produces a composite with properties that strongly depart from both pure Al $_2$ O $_3$ and TiC-reinforced Al $_2$ O $_3$. Al $_2$ O $_3$ + SiC_w was introduced by Greenleaf in 1985 as WG-300° — the cutting tool material that truly marked the beginning of the era of ceramic machining. **WG-300**[®] is the first commercially available ceramic composite using the technology of whisker-reinforcement. These whiskers are grown under carefully controlled conditions and, due to their high purity and lack of grain boundaries, approach the theoretical maximum tensile strength obtainable - on the order of 1 million psi (6,900 MPa). As a direct consequence of the tensile strength of the whiskers, when a crack starts to grow in the Al₂O₂ matrix and encounters a SiC₂ crystal at some angle to the plane of the crack it must either go around it where it will
inevitably encounter another randomly-oriented SiC_ crystal (and so on and so forth expending large amounts of energy in the process) or it must force the whisker to be pulled out of the matrix – which also requires a lot of energy. If a crack has insufficient energy to force a whisker to be pulled out it will cause the whisker to deform elastically and, once the force is removed, the whisker which is now under tension will act to bring the two planes of the crack back together. In this manner, the fracture toughness of WG-300° is made unprecedentedly high. High fracture toughness in turn means that WG-300° will wear predictably and consistently in even the most abrasive materials. # Figure 30a Whisker-Reinforced WG-300®'s Fracture Surface A close examination of the fracture surface at extreme magnification will reveal not only a clear indication of the whiskers randomly dispersed throughout the matrix, but also the obvious hexagonal holes where whiskers have actually been pulled out in the fracture process. #### WG-300® properties | Density [g/cm³] | _ | 3.74 | | |--|---|------|--| | Hardness Hv (500g load) | _ | 2100 | | | Transverse Rupture Strength [MPa] | _ | 690 | | | Fracture Toughness [MPa \sqrt{m}] | _ | 10.0 | | | Thermal Expansion [10 ⁻⁶ /°C] | _ | 6.0 | | | Thermal Conductivity [W/mK] | _ | 35 | | | | | | | **WG-600**° is the first commercially available coated whisker-reinforced ceramic composite. The coating increases the tool's hot-hardness and serves to further protect the substrate from oxidation and softening, extending tool life. **WG-700™** is the newest whisker-reinforced ceramic composite featuring improved toughness and a unique high-speed coating. Concurrent with the work on Al₂O₃ composites, Greenleaf was developing another promising type of ceramic – Silicon Nitride (Si₃N₄). In 1986 Greenleaf launched **GSN100**TM – a hot-pressed Si₃N₄-based grade specifically for machining cast iron. Si₃N₄ and SiAlON (silicon nitride with the addition of aluminum and oxygen) ceramics differ from Al₂O₃ composites in a number of ways, but the primary properties that make them viable as cutting tools are their transverse rupture strength and toughness. Without additional strengthening mechanisms their fracture toughness does not begin to approach the fracture toughness of whisker-reinforced ceramics, making most silicon nitride and SiAlON grades currently on the market only suitable for machining grey and nodular cast iron and, in some cases, hardened steel. **XSYTIN®-1** is a Si₃N₄-based phase-toughened ceramic that exhibits a set of unique material properties that make it the ideal cutting tool for a range of applications previously inaccessible to ceramics. Through the manipulation of grain growth and phase distribution, XSYTIN®-1 attains an internal matrix of interlocked grains, that, together with the inherent properties of Si₂N, result in a reinforced structure that resists the nucleation and growth of cracks in a multitude of materials and machining environments and offers unparalleled transverse rupture strength and resistance to thermal shock. In practice, this means that XSYTIN®-1 is able to withstand unstable conditions with severe hardness gradients, interruption, or inclusions, or else support a very high chip load in clean cuts without notching. Because of its toughness and transverse rupture strength, applying XSYTIN®-1 outside the (very wide) envelope of recommended cutting conditions will not lead to catastrophic failure rather the tool will top-slice until a deep notch forms, but will continue to cut while wearing in this fashion. When applied within the envelope of recommended cutting conditions XSYTIN®-1 will exhibit gradual flank wear with little to no notching in the majority of known heat-resistant super alloys, steels, hard cast irons, etc. | XSYTIN®-1 properties | | | | |--|---|------|--| | Density [g/cm³] | _ | 3.55 | | | Hardness Hv (500g load) | _ | 1830 | | | Transverse Rupture Strength [MPa] | _ | 1200 | | | Fracture Toughness [MPa \sqrt{m}] | _ | 7.5 | | | Thermal Expansion [10 ⁻⁶ /°C] | _ | 3.5 | | | Thermal Conductivity [W/mK] | _ | 26 | | | | | | | # **Applying Greenleaf Ceramics** All cutting tools exploit the fact that at a certain elevated temperature the hardness of the cutting tool is still higher than the hardness of the material being machined, and its strength is sufficient to withstand the mechanical loads the cutting tool is subjected to in the course of machining. The difference in hardness allows using the cutting tool to deform the workpiece material until it fails — forming a chip. The effect of the heat generated in cutting is two-fold: - 1. Heat produced in the workpiece plasticizes (softens) the material ahead of the cut, reducing the strength of the material, making it easier to cut - 2. Heat conducted into the tool plasticizes the tool, reducing its hardness, strength, and adversely affecting tool life Higher temperatures also tend to raise the reactivity of both cutting tool and workpiece and make it more likely that either will oxidize or otherwise chemically interact. Heat in cutting is generated through the following actions in descending order of relative magnitude: - Chip formation, which, depending on the material being machined and the geometry of the cutting tool will cause the material to fail in some combination of shear and tension with ductile metals failing almost exclusively in shear. - 2. Friction between the chip and the cutting tool - 3. Friction between the cutting tool and the workpiece This heat is then dissipated through: - 4. Transport away from the cutting zone in the chip - 5. Conduction into the workpiece - 6. Conduction into the tool The highest temperature in a metal-cutting operation is typically seen at the very edge of the cutting tool — both in the case of tungsten carbide (WC-Co) and ceramic tools. The main difference between carbide and ceramic cutting tools is how high this temperature can be. Unlike carbide, ceramics retain strength and hardness at temperatures far exceeding 800°C (1472°F). This property allows for much higher cutting speeds than those of carbide, an attribute that ceramic cutting tools became known for in the machining of heat-resistant super alloys, hardened steel, and various cast irons. The generated heat is dissipated as shown above with the chip carrying away the majority of the heat but the heat produced ahead of the cut plasticizes the material to a much greater extent than in carbide machining, lowering its strength and reducing the specific cutting energy. In addition to the chosen cutting speed, feed, and depth of cut, the following factors contribute to heat generation: - 1. Chip formation - a. Material: ductility, shear strength and how they vary with strain rate and temperature - b. Tool: - i. Macro-geometry: rake angles, cutting edge profile (e.g. extent of curvature) - ii. Micro-geometry: edge preparation, chipform - 2. Friction between the chip and the cutting tool - a. Coefficient of friction between the workpiece material and the cutting tool - b. Rake angles, cutting edge profile - c. Coolant composition and pressure - 3. Friction between the cutting tool and the workpiece - a. Coefficient of friction between the workpiece material and the cutting tool - b. Clearance between the flank of the tool and the workpiece as affected by the orientation and macro-geometry of the tool and geometry of the workpiece # **Application Guideline** - 1. Use the right tool holder, minimize tool deflection - 2. Use the strongest insert possible - 3. Use the right edge preparation - 4. Use the right grade - 5. Use the right cutting conditions - 6. Optimize the machining strategy and tool path # **Tool-Holding Selection** The term 'tool' usually refers to that part of the system which interacts with the workpiece to form a chip. When using a solid endmill, the endmill is the tool and the adapter that allows the endmill to be fixed in the spindle is the tool holder. In indexable tooling systems then, the insert is the tool and the milling cutter or turning holder are the tool holder. Having chosen a tool holder that fits the geometry of the feature being machined (has enough reach to remove all of the programmed stock and enough clearance to avoid collisions), the number one concern when applying ceramics becomes rigidity. The cutting forces generated in ceramic machining are significantly higher than those in carbide machining, and the tool holder provides the interface through which these forces are transferred from the insert to the machine. It is necessary to use the most rigid tool holder and fix it in a manner that will minimize deflection. Any amount of deflection may lead to vibration. High-frequency loading, made higher by the speeds at which ceramics are applied, is extremely detrimental to the tool life of ceramics. Increasing overhang of tool holders can produce dramatically unfavorable results. For the same cutting force, tool holder material, and cross-section having twice the overhang will result in an eight-fold increase in deflection! Increasing the crosssectional area of the holder will increase its rigidity and reduce deflection. In practical terms, this means that the larger the cross-sectional area of the tool holder and the shorter the distance between the cutting edge and where the tool holder is attached to the machine (tool hangout) – the less deflection and the lower the detrimental effects of vibration. Whether it is audible or not — microvibration is a phenomenon that is not easy to detect or manage other than through meticulous observation and analysis of wear, or the use of specific measuring equipment in the course of machining. Most notably, minimizing deflection must be considered when: #### 1. Using boring bars Boring bars operate with much greater length-to-diameter ratios than
turning tools. In this case, "heavy" metal or solid-carbide bars are often easily justified. Solidcarbide boring bars have three (3) times the modulus of elasticity (E) of a steel bar. This means that a carbide bar will only deflect 1/3 as much as a comparable steel bar under identical circumstances. As a general rule, when machining nickel-based alloys, steel boring bars will give adequate performance at hangout-to-bar diameter ratios of up to 3:1. Special boring bars manufactured from "heavy" metals give an advantage over steel bars and can be used at ratios up to 5:1. Carbide boring bars extend this range to ratios up to 7:1. See Figure 33a. #### 2. Mounting shell-style milling cutters on an arbor or endmills in a longer holder For shell-style milling cutters use an arbor of the largest diameter possible, ideally at least as large as the diameter of the mounting surface of the cutter, and the smallest length possible. For endmills – use the shortest holder possible. Generally speaking, having a larger contact area between the tool holder and the spindle/turret is also beneficial. So a 50 taper is better than a 40, and fixing a square turning holder so that it is pushed as far into the turret as possible is better than having any of the tool hanging out for no reason. Tool holders designed for ceramic inserts differ significantly from those designed for carbide and Greenleaf tools for ceramic inserts may differ from those produced by another manufacturer. These differences may be as follows: - 1. Tolerances and shape of pocket and/or shim leading to incorrect insert seating, and incorrect distribution and transfer of stresses - Clamping / fixation leading to incorrect distribution and transfer of stresses - Rake angles that are not optimal for ceramic machining Any of the above may lead to irregular wear or catastrophic failure on their own. Put together – poor tool life is almost guaranteed. Ceramic inserts should NOT[1] be used in a tool holder designed for carbide regardless of the manufacturer in question, and Greenleaf ceramic inserts should only be used in Greenleaf tool holders for ceramics designed specifically and uniquely to extend tool life of ceramic inserts. Finally, use integral tool holders whenever possible – modular tool holders add flexibility for usability in multiple applications, but add degrees of freedom that increase the potential for deflection and additional vibration. ATI ^[1] The only set of circumstances in which using a ceramic insert in a carbide holder could be considered is if there is no way to replace the tool, the cut is fairly light, and the ceramic in question is XSYTIN®-1. And even then - regular wear would not be expected. # Insert Strength The magnitude of the stresses that an insert is able to carry without failing are not only material-dependent, but also directly related to its geometry—its thickness, shape, and corner radius. Ceramic materials with higher (transverse rupture) strength can be applied in more fragile configurations. #### Thickness: Increased insert thickness results in better impact resistance, heat dispersion, and tool life, particularly in roughing, where light irregular wear is acceptable but may cause a thinner insert to fracture, but generally in any stage of machining. #### Shape: In declining order of corner strength, the strongest inserts are: Round, 100° Diamond, Square, 80° Diamond, Triangle, 55° Diamond, and 35° Diamond. A pin-lock style insert — an insert with a hole (e.g. RNGA, SNGA, CNGA, DNGA, VNGA) is always weaker than an insert that is solid. Pin-lock style inserts should only be used when cutting forces are low, the cut is continuous, and tolerances are of primary importance — as in finishing operations. Inserts with increased flank clearance (e.g. RCGN, RPGN, SPGN, VCGN) are also weaker than negative inserts, but they are typically used with different rake angles, so the chip isn't as strongly sheared and the cutting forces are lower. #### **Corner radius:** The larger the corner radius, the stronger the corner. Do not attempt to do all roughing operations with a small corner radius just because the finished fillet calls for a small radius. Use a round insert or large radius insert for roughing and change the tool for the final cuts. ## **Edge Preparations** Unlike tungsten carbide (WC-Co) inserts whose edge is typically only honed, where the shape and size of the hone are quite important, ceramic inserts commonly require a chamfer ("upsharp" ceramic inserts without a hone or chamfer are generally not recommended). The size and angle of the chamfer(s) with respect to the rake face of the insert and the size of the hone define the edge preparation. Hones on ceramic inserts are applied for the same reasons that hones are applied on carbide — to protect the edge from microchipping which then leads to uneven heat and stress distributions and may reduce tool life. Some applications, however, do not require a hone. The most common example of such would be the use of the T1 edge preparation on WG-300°, WG-600°, WG-700™ in clean turning of Inconel 718 — something made possible by the exceptional fracture toughness of WG-300°. The choice of edge preparation depends on a number of factors, among them: - 1. The transverse rupture strength and fracture toughness of the ceramic cutting tool material - 2. The extent of variation of mechanical stresses in the course of machining: is the cut continuous or interrupted? How heavily interrupted? Are the fixture, part, and tool sufficiently rigid or prone to deflection? Are the spindle bearings worn and likely to encourage vibration? - 3. Chip formation: does the chip separate well or is the material quite ductile and retains a large range of plastic deformation at high strain rates? In other words, is the chip typically continuous (e.g. nickel-based alloys), discontinuous (e.g. cast iron), or cyclical (e.g. titanium)? Is the material being machined homogeneous or not (e.g. large particles of a very high hardness embedded in a softer matrix; multiple phases that respond differently to high strain rates)? The edge preparation also affects chip formation, in that a chamfer will force a ductile chip through a greater change in direction (i.e. higher strain rate) increasing the degree to which the surface layer of the material is deformed in producing a chip, generating more heat and higher cutting forces. $\alpha_3 > \alpha_4$ A chamfer redirects some of the mechanical stresses so that a part of what would load the insert in bending instead loads it in compression. The compressive strength of ceramics is substantially higher than their tensile strength so that, when appropriate and necessary, a chamfer can be used to protect the edge from irregular wear such as chipping or top-slicing if the static loads or impact encountered in the course of machining locally exceed the strength or toughness of the cutting tool. Friction Normal force Resultant cutting force Heavy Chamfer Resultant cutting force Compressive load Bending load Selecting the appropriate edge preparation for the given combination of workpiece material, type of machining, and cutting tool material is paramount to the stability of the machining process and optimal tool life. The same logic applies to increasing rake angles for negative inserts, which is one reason why standard Greenleaf tools for negative ceramic inserts have -10° side rake instead of the -5°-6° common in toolholders for WC-Co. See pages ATI 22-23 and the following section on material-specific tool selection for more details. #### Material Classification and Tool Selection #### Use the tables that follow as a guide. The grade and edge preparation recommendations below are not definitive and should not be considered final. You may need to apply other grades and edge preparations to optimize the process. However, based on decades of ceramic application history, the information that follows provides the best starting point. For additional information on materials, grades, edge preparations, and other product application data, please contact Greenleaf Technical Service. For the purposes of the remainder of this guide, we will divide all materials commonly addressable with ceramics into groups that closely follow ISO material definitions and sub-groups as follows: - 1. Heat-resistant super alloys S (corrosion-resistant 1, high-strength 2, wear-resistant 3) - 2. Hardened steel H (Fe base, C < 2%) (carbon and alloyed 1, maraging 2, tool steel 3, nitrided and/or carburized 4) - 3. Cast iron K (Fe base, C > 2%) (lamellar 1, nodular 2, CGI 3, white 4, ADI 5, nitrided and/or carburized 6) - 4. Stainless steel M (Fe base, Cr > 10%) (austenitic 1, martensitic 2, super-austenitic 3, duplex 4, PH 5) #### Heat-Resistant Super Alloys (S) Depending on one's definition of 'heat' and 'resistance' the term heat-resistant super alloys (HRSA) can refer to anything from 316 austenitic stainless steel to near-alpha titanium alloy Ti-6242. For the purposes of this guide, however, heat-resistant super alloys will specifically denote alloys with a nickel or cobalt matrix. Recent developments in stainless steel (duplex and super-austenitic stainless steel) produced alloys that offer a high resistance to corrosion at moderate temperatures with a significantly lower material cost than Ni-based alloys that were used for the same purpose. Corrosionresistant Ni-based alloys are now almost exclusively used in environments that are not only corrosive but also require strength at elevated temperatures. The reason why nickel and cobalt are so prized in high-temperature environments is that their melting point is relatively high, and unlike iron (which transforms from ferrite to austenite long before it starts to melt), they retain the same microstructure all the way until melting. With the addition of chromium, Ni- and Co-based alloys also exhibit remarkable resistance to corrosion at high temperatures.
Finally, multiple mechanisms can be put in place through alloying and heat treatments to strengthen the nickel and cobalt base and stabilize the microstructure to prevent or slow down degradation at higher temperatures. #### Corrosion-Resistant HRSA (S1) #### **Industry segments:** Oil and gas, petrochemical, pulp and paper, marine and offshore environments, pharma, hydraulics #### **Common S1 alloys:** Inconel 6XX series, Incoloy, Hastelloy, Monel #### Recommended grades and edge preparations: | | | Material
Deposition Scale | Roughing | Medium-Roughing | Semi-Finishing | Finishing | Coolant | |-------------|--------------------------------|------------------------------|------------------------|-------------------|-------------------|----------------|---------| | | Continuous Cuts | XSYTIN®-1 A / T1A | WG-300® T1 | WG-600® T1 | WG-600° T1 | WG-600® A GF-1 | YES | | | Continuous cuts | WG-300° T1A | XSYTIN®-1 A | WG-300® T1 | WG-300° T1 | WG-300® A GF-1 | 11.5 | | | Thin-Walled Turning | XSYTIN®-1 A | XSYTIN®-1 A | XSYTIN®-1 A | WG-300° T1 | WG-600® A GF-1 | YES | | | Thin Walled Fulling | WG-300° T1A | WG-300® T1 | WG-300® T1 | WG-600® T1 | WG-300® A GF-1 | 11.5 | | | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1 | WG-600° T1 | WG-600® A GF-1 | YES | | Cuts | | WG-300° T1A | WG-300 [®] T1 | WG-300® T1 | WG-300® T1 | WG-300® A GF-1 | 125 | | ted | Medium Interruption | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | WG-700™ T1A | WG-600® A GF-1 | NO | | 를 | medium interruption | WG-300° T1A | WG-300® T1A | WG-300° T1A | WG-300® T1A | WG-300® A GF-1 | No | | Interrupted | Severe Interruption or Milling | XSYTIN®-1 A / T1A | - | NO | | | Severe interruption of mining | WG-300° T1A | WG-300® T1A | WG-300° T1A | WG-300® T1A | - | 110 | #### High-Strength HRSA (S2) #### **Industry segments:** Turbo- and super-chargers for reciprocating engines, high-performance reciprocating engines, gas turbines for propulsion or power generation, rocket engines, and ramjets #### **Common S2 alloys:** Inconel 7XX series, Waspaloy, Rene, Mar-M, Nimonic, IN100, Udimet, RR1000, GTD 111, Haynes #### Recommended grades and edge preparations: | | | Forging Scale | Roughing | Medium-Roughing | Semi-Finishing | Finishing | Coolant | |---------|--------------------------------|-------------------|-------------------|-------------------|-------------------|----------------|---------| | | Continuous Cuts | XSYTIN®-1 A / T1A | XSYTIN®-1 A | WG-600® T1 | WG-600° T1 | WG-600® A GF-1 | YES | | | Continuous Cuts | WG-700™ T1A | WG-300° T1 | WG-300® T1 | WG-300° T1 | WG-300® A GF-1 | 11.5 | | | Thin-Walled Turning | XSYTIN®-1 A | XSYTIN®-1 A | WG-700™ T1 | WG-700™ T1 | WG-600® A GF-1 | YES | | | Tillii Walled Turning | WG-300° T1A | WG-700™ T1 | XSYTIN®-1 A | XSYTIN®-1 A | WG-300® A GF-1 | 11.5 | | | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1 | WG-600® T1 | WG-600® A GF-1 | YES | | Cuts | Light interruption | WG-300° T1A | WG-300° T1 | WG-300® T1 | WG-300° T1 | WG-300® A GF-1 | 11.5 | | upted (| Medium Interruption | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | WG-700™ T1A | WG-600® A GF-1 | NO | | | medium interruption | WG-700™ T1A | WG-700™ T1A | WG-700™ T1A | XSYTIN®-1 A | WG-300® A GF-1 | NO | | Inter | Severe Interruption or Milling | XSYTIN®-1 A / T1A | - | NO | | | Severe interruption of mining | WG-700™ T1A | WG-700™ T1A | WG-700™ T1A | WG-700™ T1A | - | 140 | #### Wear-Resistant HRSA (S3) #### **Industry segments:** Oil & gas, power generation, petrochemical, hydraulics, material processing #### **Common S3 alloys:** Stellite, Eutalloy, Metco, Wall Colmonoy, Weartech, Triballoy #### Recommended grades and edge preparations for materials with a hardness below 50 HRc: | | | Material
Deposition Scale | Roughing | Medium-Roughing | Semi-Finishing | Finishing | Coolant | |--------|--------------------------------|------------------------------|------------------------|-------------------|-------------------|----------------|---------| | | Continuous Cuts | XSYTIN®-1 A / T1A | XSYTIN®-1 A | WG-600® T1 | WG-600° T1 | WG-600® A GF-1 | YES | | | Continuous cuts | WG-300° T1A | WG-300® T1 | WG-300® T1 | WG-300® T1 | WG-300® A GF-1 | 125 | | | Thin-Walled Turning | XSYTIN®-1 A | XSYTIN®-1 A | WG-300® T1 | WG-300° T1 | WG-600® A GF-1 | YES | | | Thin Walled Farming | WG-300° T1A | WG-300 [®] T1 | XSYTIN®-1 A | XSYTIN®-1 A | WG-300® A GF-1 | 117 | | | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1 | WG-600® T1 | WG-600® A GF-1 | YES | | Cuts | Light interruption | WG-300° T1A | WG-300 [®] T1 | WG-300® T1 | WG-300® T1 | WG-300® A GF-1 | 125 | | upted | Medium Interruption | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | XSYTIN®-1 A / T1 | WG-300® T1A | WG-600® A GF-1 | NO | | l m | medium interruption | WG-300° T1A | WG-300° T1A | WG-300° T1A | XSYTIN®-1 A | WG-300® A GF-1 | NO | | Intern | Severe Interruption or Milling | XSYTIN®-1 A / T1A | - | NO | | | Severe interruption of mining | WG-300° T1A | WG-300° T1A | WG-300° T1A | WG-300® T1A | - | NO | #### Recommended grades and edge preparations for materials with a hardness of 50 HRc or higher: | | | Material
Deposition Scale | Roughing | Medium-Roughing | Semi-Finishing | Finishing | Coolant | |-------|--------------------------------|------------------------------|-------------------|-------------------------|-------------------|----------------|---------| | | Continuous Cuts | WG-300° T1A | WG-300° T1A | WG-600° T1A | WG-600® T1A | WG-600® A | YES | | | Continuous cuts | WG-600° T1A | WG-600® T1A | WG-300 [®] T1A | WG-300® T1A | WG-300® A | 1125 | | | Thin-Walled Turning | WG-300° T1A | WG-300® T1A | WG-600° T1A | WG-600® T1A | WG-600® A GF-1 | YES | | | Tilli Walled Furning | WG-600° T1A | WG-600® T1A | WG-300° T1A | WG-300® T1A | WG-300® A GF-1 | 125 | | | Light Interruption | WG-300° T1A | WG-300° T1A | WG-600 [®] T1A | WG-600® T1A | WG-600® A | YES | | Cuts | Light interruption | WG-600° T1A | WG-600® T1A | WG-300° T1A | WG-300® T1A | WG-300® A | 11.5 | | upted | Medium Interruption | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-300° T1A | WG-600® T1A | WG-600® T1A | NO | | | | WG-300° T1A | WG-300° T1A | WG-600 [®] T1A | WG-300® T1A | WG-300® T1A | No | | Inter | Severe Interruption or Milling | XSYTIN®-1 A / T1A | - | NO | | | | WG-300° T1A | WG-300® T1A | WG-300° T1A | WG-300® T1A | - | 110 | #### Hardened Steel (H) When referring to a material as 'hardened steel' this guide will address iron-based alloys that are hardened through quenching and machined at 40 HRc or higher. It is worth noting that there are essentially two kinds of hardened steel: one where there's enough carbon to create the microstructure, and low-carbon steels where nickel or other elements are used instead. The higher the carbon content — the more internal strain is produced and the higher the attainable hardness through quenching. Highcarbon hardened steels are rather brittle, with favorable chip formation. Low-carbon hardened steels are more ductile and require a different approach because the chip doesn't shear as easily. A class of materials known as TRIP (transformation-induced plasticity as in, for example, Mangalloy) steels where the hardening occurs in service as a result of mechanical stress will not be addressed in this guide, though their applications in earth-moving and high-impact environments are numerous and ceramics are exceptionally well-suited for their machining. #### Carbon and Alloyed Hardened Steel (H1) #### **Industry segments:** General engineering, automotive, tools #### **Common H1 alloys:** All 4-digit AISI-SAE grades #### Recommended grades and edge preparations for materials with a hardness of 40-49 HRc: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |-------------|--------------------------------|--|-------------|-------------|---------| | | Continuous Cuts | WG-300® T1A | WG-600® T1A | WG-600® T1A | YES | | | Continuous cuts | GEM-8™ T1A | GEM-8™ T1A | GEM-8™ T1A | 11.3 | | | Thin-Walled Turning | XSYTIN®-1 A | WG-300® T1A | WG-600® T1A | YES | | | Tillii-walled rulliling | WG-300® T1A | XSYTIN®-1 A | WG-300® T1A | ILJ | | | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | YES | | Cuts | | WG-300® T1A | WG-300® T1A | WG-300® T1A | 123 | | ted (| Medium Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | NO | | Interrupted | Medium interruption | WG-300® T1A | WG-300® T1A | WG-300® T1A | NO | | lnte | Severe Interruption or Milling | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | NO | | | Severe interruption of milling | WG-300® T1A | WG-300® T1A | WG-300® T1A | 110 | #### Recommended grades and edge preparations for materials with a hardness of 50-59 HRc: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |------------------|--------------------------------|--|---------------|-------------|---------| | | Continuous Cuts | WG-300® T1A | WG-600° T1A | WG-600® T1A | NO | | | Continuous cuts | GEM-8™ T2A | GEM-8™ T2A | GEM-8™ T2A | NU | | | Thin-Walled Turning | WG-300® T1A | WG-600° T1A | WG-600® T1A | NO | | | Tillii-walled fullling | WG-600® T1A | WG-300° T1A | WG-300® T1A | NO | | | Light Interruption | WG-300® T1A | WG-300° T1A | WG-600® T1A | NO | | Cits | | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-300® T1A | NO | | ted (| Medium Interruption | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-600® T1A | NO | | Interrupted Cuts | Medidin interruption | WG-300® T1A | WG-300° T1A | WG-300® T1A | NO | | lnte | Severe Interruption or Milling | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-600® T1A | NO | | | Severe interruption of mining | WG-300® T2A | WG-300° T2A | WG-300® T1A | No | #### Carbon and Alloyed Hardened Steel (H1) #### Recommended grades and edge preparations for materials with a hardness of 60 HRc or higher: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant |
-------------|--------------------------------|--|---------------|-------------|---------| | | Continuous Cuts | WG-300® T4B+ | WG-600® T4B | WG-600® T1A | NO | | | Continuous cuts | GEM-8™ T4B+ | GEM-8™ T4B | GEM-8™ T2A | No | | | Thin-Walled Turning | WG-300® T4B+ | WG-600® T4B | WG-600® T1A | NO | | | Tillii-walled rulliling | WG-600° T4B+ | WG-300® T4B | WG-300® T1A | NO | | | Light Interruption | WG-300® T4B+ | WG-600® T4B | WG-600® T1A | NO | | Cuts | | WG-600® T4B+ | WG-300® T4B | WG-300® T1A | NO | | | Medium Interruption | WG-300® T4B+ | WG-600® T4B | WG-600® T1A | NO | | Interrupted | Medium interruption | WG-600® T4B+ | WG-300® T4B | WG-300® T1A | NO | | Inte | Severe Interruption or Milling | XSYTIN®-1 T2A | XSYTIN®-1 T2A | WG-600® T1A | NO | | - | Severe interruption of Milling | WG-300® T2A | WG-300° T2A | WG-300® T1A | INO I | NOTE: T4B+ denotes the following edge preparations: T4B, T5B, T6B, T10B. #### Maraging Steel (H2) #### **Industry segments:** Turbine engine shafts, drive shafts, crankshafts, gears, aircraft landing gear, ordnance #### **Common H2 alloys:** Maraging, AerMet, ML340, Super CMV, F1E, ES-1 #### Recommended grades and edge preparations: | | | Forging Scale | Roughing | Finishing | Coolant | |------------------|--------------------------------|-------------------|-------------|-------------|---------| | | Continuous Cuts | XSYTIN®-1 A | XSYTIN®-1 A | XSYTIN®-1 A | YES | | | Thin-Walled Turning | XSYTIN®-1 A | XSYTIN®-1 A | XSYTIN®-1 A | YES | | uts | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | XSYTIN®-1 A | YES | | Interrupted Cuts | Medium Interruption | XSYTIN®-1 A / T1A | XSYTIN®-1 A | XSYTIN®-1 A | NO | | Inter | Severe Interruption or Milling | XSYTIN®-1 A / T1A | XSYTIN®-1 A | XSYTIN®-1 A | NO | #### Tool Steel (H3) #### **Industry segments:** #### **Common H3 alloys:** Material processing, wear-resistant applications (die and mold in particular) W, O, A, D, S, T, M, H, P, L, F AISI-SAE tool steel grades such as: D2, S7, A2 $\,$ #### Recommended grades and edge preparations for materials with a hardness of 40-49 HRc: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |------------------|--------------------------------|--|-------------|-------------------------|---------| | | Continuous Cuts | WG-300° T1A | WG-600® T1A | WG-600® T1A | YES | | | Continuous cuts | GEM-8™ T1A | GEM-8™ T1A | GEM-8™ T1A | 113 | | | Thin-Walled Turning | XSYTIN®-1 A | WG-300° T1A | WG-600® T1A | YES | | | Tilli Walled Turning | WG-300° T1A | XSYTIN®-1 A | WG-300® T1A | 125 | | | Light Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | YES | | l E | | WG-300 [®] T1A | WG-300° T1A | WG-300® T1A | 125 | | ted | Medium Interruption | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | NO | | Interrupted Cuts | Medium interruption | WG-300® T1A | WG-300° T1A | WG-300® T1A | No | | lnte | Severe Interruption or Milling | XSYTIN®-1 A | XSYTIN®-1 A | WG-600® T1A | NO | | | Severe interruption of mining | WG-300° T1A | WG-300° T1A | WG-300 [®] T1A | NO | #### Recommended grades and edge preparations for materials with a hardness of 50-59 HRc: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |-------------|--------------------------------|--|-------------------------|-------------------------|---------| | | Continuous Cuts | WG-300® T1A | WG-600® T1A | WG-600® T1A | NO | | | Continuous cuts | GEM-8™ T2A | GEM-8™ T2A | GEM-8™ T2A | NO | | | Thin-Walled Turning | WG-300° T1A | WG-600° T1A | WG-600® T1A | NO | | | Tilli Walled Turning | WG-600° T1A | WG-300° T1A | WG-300 [®] T1A | NO | | | Light Interruption | WG-300° T1A | WG-300° T1A | WG-600® T1A | NO | | Cuts | | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-300 [®] T1A | NO | | ted | Medium Interruption | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-600® T1A | NO NO | | Interrupted | medium interruption | WG-300° T1A | WG-300° T1A | WG-300® T1A | | | ln te | Severe Interruntion or Milling | XSYTIN®-1 T1A | XSYTIN®-1 T1A | WG-600® T1A | NO | | | Severe Interruption or Milling | WG-300® T2A | WG-300 [®] T2A | WG-300° T1A | | #### Recommended grades and edge preparations for materials with a hardness of 60 HRc or higher: | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |-------------|--------------------------------|--|---------------|-------------|---------| | | Continuous Cuts | WG-300® T4B+ | WG-600° T4B | WG-600® T1A | NO | | | Continuous cuts | GEM-8™ T4B+ | GEM-8™ T4B | GEM-8™ T2A | No | | | Thin-Walled Turning | WG-300® T4B+ | WG-600° T4B | WG-600® T1A | NO | | | Tillii-walled rulliling | WG-600° T4B+ | WG-300® T4B | WG-300® T1A | NO | | | Light Interruption | WG-300° T4B+ | WG-600® T4B | WG-600® T1A | NO | | Cuts | | WG-600® T4B+ | WG-300® T4B | WG-300® T1A | NO | | | Medium Interruption | WG-300° T4B+ | WG-600® T4B | WG-600® T1A | NO | | Interrupted | Medium interruption | WG-600® T4B+ | WG-300® T4B | WG-300® T1A | NO | | Inte | Severe Interruption or Milling | XSYTIN®-1 T2A | XSYTIN®-1 T2A | WG-600® T1A | NO | | - | Severe interruption of milling | WG-300® T2A | WG-300® T2A | WG-300® T1A | I NO | Note: Roughing is for DOC greater than 0.04" (1mm) #### Nitrided and/or Carburized Steel (H4) **Industry segments:** Bearings, hydraulics, wear-resistant applications #### **Common H4 alloys:** 32CrMoV13, M50, M50NiL, M2, Pyrowear 675, Nitralloy #### Recommended grades and edge preparations: | | | White Layer | Roughing | Finishing | Coolant | |-------------|--------------------------------|---------------|-------------------------|-------------|---------| | | Continuous Cuts | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | | Continuous cuts | WG-300® T4B+ | WG-300® T4B | WG-300® T7A | - NU | | | Thin-Walled Turning | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | | Tillii Walled Turning | WG-300° T4B+ | WG-300 [®] T4B | WG-300® T7A | NO | | | Light Interruption | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | Cuts | | WG-300° T4B+ | WG-300° T4B | WG-300® T7A | No | | ted | Medium Interruption | WG-300° T4B+ | WG-300° T4B | WG-300® T7A | NO | | Interrupted | Medium interruption | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | lnte | Severe Interruption or Milling | XSYTIN®-1 T2A | XSYTIN®-1 T2A | WG-600® T1A | NO | | | Severe interruption of mining | WG-300® T2A | WG-300 [®] T2A | WG-300° T1A | NO | #### Cast Iron (K) Cast iron is an alloy of iron and >2% carbon where carbon forms graphite (because of the addition of silicon) or cementite (Fe₃C). Because of the inability of graphite to carry stresses or the high fraction of brittle phases most cast iron is quite brittle. The quantity of carbon that remains as graphite and relative fraction and morphology of phases ultimately affect hardness, strength, and the behavior of the material. This guide will not address the machining of malleable cast irons (EN-GJMB, EN-GJMW), austenitic nodular cast irons (EN-GJSA, Ni-resist), or cast irons specific to the roll industry, though all of them lend themselves exceptionally well to ceramic machining. #### Gray (Lamellar) Cast Iron (K1) #### **Industry segments:** Automotive, general engineering, housings, machine tools #### Common K1 alloys: GG15 - GG35 a.k.a. EN-GJL-150 - EN-GJL-350 (for 150-350 MPa minimum tensile strength) #### Recommended grades and edge preparations: | | | Roughing | Finishing | Coolant | |-------------|--------------------------------|---------------|------------|-----------| | | Continuous Cuts | GSN100™ T2 | GSN100™ T2 | POSSIBLE | | | | XSYTIN®-1 T2 | WG-600° T2 | 1 OSSIDEE | | Cuts | Light-Medium Interruption | GSN100™ T2 | GSN100™ T2 | NO | | | | XSYTIN®-1 T2 | WG-600® T2 | NO | | Interrupted | Severe Interruption or Milling | GSN100™ T2A | GSN100™ T2 | NO | | lnte | | XSYTIN®-1 T2A | WG-600® T2 | NO | #### Ductile (Nodular) Cast Iron (K2) #### **Industry segments:** Pipe, automotive, wind energy, machine tools, metal processing #### Common K2 alloys: GGG40 – GGG80 a.k.a. EN-GJS-400 – EN-GJS-800 (for 400-800 MPa minimum tensile strength) #### Recommended grades and edge preparations: | | | Roughing | Finishing | Coolant | |---------|--------------------------------|---------------|------------|-----------| | | Continuous Cuts | GSN100™ T2 | GSN100™ T2 | POSSIBLE | | | | XSYTIN®-1 T2 | WG-600® T2 | I OSSIDEE | | Cuts | Light-Medium Interruption | GSN100™ T2 | GSN100™ T2 | NO | | upted (| | XSYTIN®-1 T2 | WG-600® T2 | NO | | rrupt | Severe Interruption or Milling | GSN100™ T2A | GSN100™ T2 | NO | | Interr | Severe interruption of milling | XSYTIN®-1 T2A | WG-600® T2 | NU | #### Compacted Graphite (Vermicular) Cast Iron (K3) #### **Industry segments:** Automotive, high-compression (and high-displacement) diesel engines, turbochargers #### Recommended grades and edge preparations: #### Common K3 alloys: CGI, EN-GJV-300 — EN-GJV-500 (for 300-500 MPa minimum tensile strength) | | | Roughing | Finishing | Coolant | |-------------|--------------------------------|-------------------|------------------|-----------| | | Continuous Cuts | XSYTIN®-1 A / T2 | XSYTIN®-1 A / T2 | POSSIBLE | | | | GSN100™ T2 | GSN100™ T2 | 1 OSSIDEE | | Curts | Light-Medium Interruption | XSYTIN®-1 A / T2 | XSYTIN®-1 A / T2 | NO | | | | GSN100™ T2 | GSN100™ T2 | NO | | Interrupted | Severe Interruption or Milling | XSYTIN®-1 A / T2A | XSYTIN®-1 A | NO | | lnte | | GSN100™ T2A | GSN100™T2A | 140 | #### White Cast Iron (K4) #### **Industry segments:** Grinding and ore crushing equipment, rolls, pumps, extrusion, and various applications requiring high resistance to abrasion and high hot-hardness #### Recommended grades and edge preparations: #### **Common K4 alloys:** Ni-Hard, EN-GJN-HV350 - EN-GJN-HV600 (for 350-600 minimum HV hardness) | | | Roughing | Finishing | Coolant | |------------|--------------------------------|----------------
--------------------------|---------| | | Continuous Cuts | GEM-8™ T10B | WG-600 [®] T4B+ | NO | | | | WG-300° T4B+ | GEM-8™ T10B | NO | | Cuts | Light-Medium Interruption | WG-300° T4B+ | WG-600® T4B+ | NO | | l ë | | XSYTIN®-1 T2A+ | WG-300 [®] T4B+ | NO | | Interrupte | Severe Interruption or Milling | XSYTIN®-1 T2A+ | WG-600° T1A | NO | | | , | WG-300° T2A+ | WG-300® T1A | 110 | #### Austempered Ductile Iron (K5) #### **Industry segments:** Structural applications requiring lower overall weight than the equivalent in structural steel: construction, mining, agriculture, automotive, railroad, etc. #### Recommended grades and edge preparations: #### Common K5 alloys: ADI, EN-GJS-800 — EN-GJS-1400 (for 800-1400 MPa minimum tensile strength) | | | Roughing | Finishing | Coolant | |-------------|--|---------------|------------|-----------| | | Continuous Cuts | GSN100™ T2 | GSN100™ T2 | POSSIBLE | | | | XSYTIN®-1 T2 | WG-600° T2 | 1 OSSIDEE | | Curts | Light-Medium Interruption | GSN100™ T2 | GSN100™ T2 | NO | | ted (| j | XSYTIN®-1 T2 | WG-600® T2 | NO | | Interrupted | Severe Interruption or Milling GSN100™ T2A | | GSN100™ T2 | NO | | l te | Severe interruption of mining | XSYTIN®-1 T2A | WG-600® T2 | INU | #### Nitrided and/or Carburized Cast Iron (K6) #### **Industry segments:** #### Common K6 alloys: High-compression, high-displacement diesel engines, wear-resistant applications not requiring tensile strength K1, K2 #### Recommended grades and edge preparations: | | | White Layer | Roughing | Finishing | Coolant | |------------------|--------------------------------|-------------------------------|---------------|-------------|---------| | | Continuous Cuts | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | | Continuous cuts | WG-300® T4B+ | WG-300® T4B | WG-300® T7A | NO | | | Thin-Walled Turning | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | | | WG-300® T4B+ | WG-300® T4B | WG-300® T7A | NO | | | Light Interruption | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | Cuts | Light interruption | WG-300° T4B+ | WG-300° T4B | WG-300® T7A | No | | ted (| Medium Interruption | WG-300° T4B+ WG-300° T4B WG-3 | | WG-300® T7A | NO | | Interrupted Cuts | Medium interruption | GEM-8™ T4B+ | GEM-8™ T4B+ | GEM-8™ T7A | NO | | lnte | Severe Interruption or Milling | XSYTIN®-1 T2A | XSYTIN®-1 T2A | WG-600® T1A | NO | | | Severe interruption of mining | WG-300® T2A | WG-300® T2A | WG-300® T1A | I NO | #### Stainless Steel (M) Steel containing more than \sim 11% chrome where the chrome is available to form a passivating layer of oxides on the surface that prevents any layers below from being affected and reforms almost instantly if any part of it is removed is known as stainless for its resistance to corrosion. Stainless steels can be ferritic, austenitic, martensitic, or some mixture thereof. Higher alloying content is associated with higher resistance to different corrosive media, while martensite and precipitates are associated with higher hardness and strength. With the exception of high-carbon martensitic stainless steel, M class alloys are low-carbon and as such are tough and ductile. The majority of machined stainless steels are not ferritic, which is why this guide will not address ferritic stainless steels. #### Austenitic Stainless Steel (M1) #### **Industry segments:** Petrochemical, oil & gas, power generation, medical, pulp and paper, structural elements #### Recommended grades and edge preparations: #### Common M1 alloys: 300 and 200 AISI/ASTM series, with 304 and 316 being the most common of all | | | Roughing | Coolant | |-------------|--------------------------------|-------------|---------| | | Continuous Cuts | WG-600° T1A | YES | | | | WG-300° T1A | 125 | | Curts | Light-Medium Interruption | WG-600° T1A | YES | | | | WG-300° T1A | 165 | | Interrupted | Severe Interruption or Milling | WG-600° T1A | NO | | Inte | | WG-300° T1A | INO | #### Martensitic Stainless Steel (M2) #### **Industry segments:** Aerospace, power generation, medical, gears, valves, shafts, offshore oil & gas, bearings #### Recommended grades and edge preparations: #### **Common M2 alloys:** 416 (1.4005), 410 (1.4006), 420 (1.4021), 431 (1.4057), 248SV (1.4418), CA6NM (1.4313), Jethete M152 (1.4938) | | | Forging / Material
Deposition Scale | Roughing | Finishing | Coolant | |--------|--------------------------------|--|-------------------------|-------------|---------| | | Continuous Cuts | WG-300® T1A | WG-600° T1A | WG-600® T1A | YES | | | WG-600® T1A | | WG-300° T1A | WG-300® T1A | 11.5 | | Curts | Light-Medium Interruption | WG-300® T1A | WG-600° T1A | WG-600® T1A | YES | | 1 - | | WG-600® T1A | WG-300 [®] T1A | WG-300® T1A | 11.5 | | rrupte | Severe Interruption or Milling | WG-300® T1A | WG-600° T1A | - | NO | | Intel | | WG-600° T1A | WG-300° T1A | - | 140 | #### Super-Austenitic Stainless Steel (M3) #### **Industry segments:** Pulp & paper, petrochemical, water treatment, pollution control, offshore oil & gas, power generation #### Recommended grades and edge preparations: #### Common M3 alloys: S31266 (1.4659), 904L (1.4539), N08031 (1.4562), S34565 (1.4565), N08926 (1.4529), S31254 (1.4547), N0828 (1.4563), S32654 (1.4652), 1.4588 | | | Roughing | Coolant | |-------------|--------------------------------|-------------|---------| | | Continuous Cuts | WG-600° T1A | YES | | | | WG-300° T1A | 125 | | Cuts | Light-Medium Interruption | WG-600° T1A | YES | | ted (| | WG-300° T1A | ILJ | | Interrupted | Severe Interruption or Milling | WG-600° T1A | NO | | li te | | WG-300° T1A | NO | #### **Duplex Stainless Steel (M4)** #### **Industry segments:** Petrochemical, oil & gas, power generation, pharmaceutical, geothermal, desalination, biomass, mining #### Common M4 alloys: F51 (1.4462), F53 (1.4410), F55 (1.4501), 255 (1.4507), 1.4162, 1.4362, CD3MN #### Recommended grades and edge preparations: | | | Roughing | Coolant | |-------------|--------------------------------|-------------|---------| | | Continuous Cuts | WG-600° T1A | YES | | | | WG-300° T1A | 125 | | Cuts | Light-Medium Interruption | WG-600° T1A | YES | | ted (| | WG-300° T1A | 125 | | Interrupted | Severe Interruption or Milling | WG-600° T1A | NO | | Inte | , | WG-300° T1A | NO | #### Precipitation-Hardening Stainless Steel (M5) #### **Industry segments:** $Aerospace, power generation, petrochemical, oil\ \&\ gas$ #### Common M5 alloys: A286, PH14-8Mo, PH15-7Mo, 17-7PH, PH13-8Mo, 15-5PH, 15-7PH, 17-4PH #### Recommended grades and edge preparations: | | | Roughing | Coolant | |-------------|--------------------------------|-------------|---------| | | Continuous Cuts | WG-600° T1A | YES | | | | WG-300° T1A | 11.5 | | Cuts | Light-Medium Interruption | WG-600° T1A | YES | | | | WG-300° T1A | 125 | | Interrupted | Severe Interruption or Milling | WG-600° T1A | NO | | ln te | , | WG-300° T1A | 140 | # Chip Formation Broadly speaking, ceramic machining differs from carbide machining in the strain rates that the machined materials are subjected to. The strain rates are significantly higher because of the speeds at which ceramics are applied, the significantly more negative rake angles, and absence of chipforms in roughing, all of which the ceramic cutting tool materials are able to withstand because of their high-temperature strength and hardness. Machining processes produce high strain rates in ductile materials, and the goal in general is to: - Make use of the compressive strain in the primary shear zone to plasticize the machined layer of material ahead of the cut, reducing specific cutting energy. Then force the chip through a great degree of deformation quickly, embrittling it and making it easier to break - Direct chip flow with geometric features of the tool to minimize strain rates at and ahead of the cutting edge (so minimize heat generation) but force the chip to curl and break on impact With strain rates that WC-Co tools are able to produce (the primary limitation being hothardness: the higher the strain rate the more heat is produced, which greatly diminishes the strength and hardness of WC-Co) option 1 is not viable. Option 2 is then the primary method, which is why chipforms play such a pivotal role in carbide machining. With the much higher temperatures that Greenleaf ceramics are able to sustain, option 1 is the primary method of chip formation and breaking in all ductile materials. Because hardness and strength are most often positively correlated, it also follows that the strain rates required for the same type of chip formation are lower for harder materials and vice versa. So, Waspaloy heat treated to 34 HRc will contain a lower fraction of fine precipitates (and/or have higher average grain size) than Waspaloy heat treated to 42 HRc, and the strain rates required to produce a favorably sheared chip in 34 HRc Waspaloy are higher, corresponding to higher cutting speeds. # Chip Thickness Chip thickness is a parameter that is particularly important in ceramic machining because of its role in the distribution of heat and the importance of heat in a ceramic machining operation. In turning, chip thickness is a function of feed and lead angle, where a round insert's lead angle varies with depth of cut, while in milling it is also affected by the engagement (stepover). For straight-edged inserts in turning: $$H_{ex} = F_n \sin(K_r)$$ For round inserts in turning: $$H_{ex} \approx F_n \sin(\cos^{-1}(1 - A_p/R))$$ The majority of the heat generated in ceramic machining is a result of the strain that the deformed surface layer of the workpiece experiences, so it comes as no surprise that the majority of the heat is also evacuated as the deformed surface layer separates and becomes the chip. The capacity of the chip to carry heat, however, is limited by its thickness — the thinner the chip the less heat it is able to carry out of the cutting area. It is possible, then,
to control the distribution of heat to some degree by adjusting the chip thickness. It is a common misconception that ceramic machining can only be carried out at a single 'optimal speed.' Reducing the cutting speed lowers strain rates, reducing the extent to which the chip is embrittled and the heat that is generated, increasing the specific cutting energy and requiring higher effort to continue deforming the surface layer to failure. This, in turn, may exceed the strength of the cutting tool, leading to irregular wear or fracture. So, to compensate for the higher material strength one must reduce the mechanical loads by reducing the cross-sectional area of the chip. And reducing the chip thickness (as opposed to chip cross-sectional area, which would imply the ability to control heat evacuation the same effect by reducing feed or depth of cut independently) reduces the capacity of the chip to carry heat away, allowing more heat to remain in the cutting zone, plasticizing the workpiece material and locally reducing its strength. A **rule of thumb** that holds for <u>all</u> ceramic turning of ductile materials: Having determined the optimal cutting speed and chip thickness for a given insert in a given material, one can vary speed and chip thickness proportionately up or down as required. Adjusting up is dependent on the limits of the cutting tool, machine, and workpiece. Note that this relationship is far from exact and cannot be used to reduce the speed indefinitely — there is a minimum speed below which strain rates are too low and the stress required to deform the material to failure is higher than the strength of the ceramic cutting tool, resulting in irregular wear or fracture. It does, however, mean that having found one combination of speed and chip thickness with RNGN-45 T1 WG-300° in forged Inconel 718 at 45 HRc we are able to apply any other WG-300° negative insert with the T1 edge preparation at the same rake angles in any other part from forged Inconel 718 at 45 HRc. Suppose that you run a test and find that a solid cylinder of forged Inconel 718 at 45 HRc is best machined with an RNGN-45 T1 WG-300° at $V_c = 1150$ SFM (350m/min) and a chip thickness of $H_{ex} = 0.0063''$ (0.16mm). Suppose then, that instead of machining a solid cylinder you are machining a thin-walled seal in a used VTL – the rigidity of part, fixture, and machine are rather different, and it's likely that the cutting forces required to turn the part at $V_c = 1150$ SFM (350m/min) and $H_{ex} = 0.0063''$ (0.16mm) with a round insert would lead to deflection, vibration, and very poor tool life. So, changing the tool to a CNGN-452 T1 WG-300° and reducing the speed to 820 SFM (250m/min) would require reducing the chip thickness to 0.0063"×820/1150=0.0043" (0.11mm) which at nearly no lead angle [2] for a CNGN would translate into 0.0047 IPR (0.12mm/rev) feed and a depth of cut that the insert can sustain without failure — something that should be determined through trial and error. It also follows that for every combination of material and cutting tool there is an optimal $V_c \times H_{ex}$ pair at the higher end of speeds (so in stable machining environments) that can be adjusted to fit the given application, as above. These recommendations for continuous cuts are provided in the tables on the following pages. Note that these are the recommended starting cutting conditions. You may need to adjust both speed and chip thickness up or down to optimize the process for your unique machining environment. #### Speed and Chip Thickness Recommendations — Turning | | | | | Cutting Spee
mum Chip Th | | inch] | Maxi | Cutting Speed: V _. [m/min]
Maximum Chip Thickness: H _{ex} [mm] | | | | |---|--------|-------------------|--------|-------------------------------|-----------|---------|--------|---|-----------|---------|--| | | Н | Rc | GEM-8™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | GEM-8™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | | | S1: Corrosion-Resistant HRSA | | ٧ٍ: | | 1500 | 800 | | | 450 | 250 | | | | Inconel 625, Incoloy 825, Hastelloy, Monel | | H _{ex} : | | 0.0065 | 0.0095 | | | 0.16 | 0.24 | | | | S2: High-Strength HRSA (Solution-Treated ^[3]) | 20 | ٧ٍ: | | 1950 | 1250 | | | 600 | 375 | | | | | | H _{ex} : | | 0.007 | 0.0105 | | | 0.18 | 0.27 | | | | Low γ′ ^[4] S2 (Solution-Treated and Aged) | 40-45 | ٧ _. : | | 1150 | 800 | | | 350 | 250 | | | | Inconel 706, Inconel 718, Inconel 725 | | H _{ex} : | | 0.0065 | 0.0095 | | | 0.16 | 0.24 | | | | High γ′ S2 (Solution-Treated and Aged) | 40-50 | ٧ _. : | | 650 | 500 | | | 200 | 150 | | | | IN100, Udimet 720, Waspaloy, C1023, Rene 88, N-18 | | H _{ex} : | | 0.0045 | 0.007 | | | 0.12 | 0.18 | | | | | 20 [5] | ٧.: | | 1950 | 1250 | | | 600 | 375 | | | | S3: Wear-Resistant HRSA | | H _{ex} : | | 0.007 | 0.0105 | | | 0.18 | 0.27 | | | | Stellite, Eutalloy, Metco, Wall Colmonoy, Weartech | 62 | ٧ٍ: | | 250 | 200 | | | 80 | 55 | | | | | | H _{av} : | | 0.003 | 0.0045 | | | 0.08 | 0.12 | | | | | 40 | V _. : | 1000 | 1000 | 700 | | 300 | 300 | 210 | | | | H1: Carbon and Alloyed Steel | | H _{ev} : | 0.0045 | 0.0065 | 0.0095 | | 0.12 | 0.16 | 0.24 | | | | All 4-digit AlSI-SAE grades: 1010, 1060, 4140, 2550, 2350, etc. | 60 | V _, : | 500 | 500 | 350 | | 150 | 150 | 105 | | | | | | H_: | 0.002 | 0.0025 | 0.0035 | | 0.05 | 0.06 | 0.09 | | | | H2: Maraging Steel | 55 | V _. : | | | 600 | | | | 180 | | | | Maraging 250, AerMet 100, ML340, Super CMV, F1E, ES-1 | | H_: | | | 0.008 | | | | 0.2 | | | | | 45 | V _, : | 750 | 750 | 500 | | 225 | 225 | 160 | | | | H3: Tool Steel | | H _{av} : | 0.004 | 0.0045 | 0.007 | | 0.1 | 0.12 | 0.18 | | | | D2, M4, S7, A2, etc. | 65 | V _, : | 250 | 250 | 200 | | 80 | 80 | 55 | | | | | | H_: | 0.0015 | 0.0015 | 0.0025 | | 0.04 | 0.04 | 0.06 | | | | H4: Nitrided and/or Carburized Steel | 64 | V _. : | 250 | 250 | 200 | | 80 | 80 | 55 | | | | 32CrMoV13, M50, M50NiL, M2, Pyrowear 675, Nitralloy | | H _{av} : | 0.0015 | 0.0015 | 0.0025 | | 0.04 | 0.04 | 0.06 | | | | K1: Lamellar (Grey) Cast Iron | | V _c : | | | 3600 | 3600 | | | 1100 | 1100 | | | GG15, GG25, GG35 (EN-GJL-150, EN-GJL-250, EN-GJL-350) | | H _{ex} : | | | 0.014 | 0.014 | | | 0.35 | 0.35 | | | K2 ^[6] : Nodular Cast Iron | | V _. : | | | 2600 | 2600 | | | 800 | 800 | | | GGG40 – GGG80 (EN-GJS-400 – EN-GJS-800) | | H _{ex} : | | | 0.01 | 0.01 | | | 0.25 | 0.25 | | | K3: Compacted Graphite Iron (CGI) | | V _c : | | | 1150 | 1150 | | | 350 | 350 | | | EN-GJV-300 — EN-GJV-500 | | H _{av} : | | | 0.01 | 0.01 | | | 0.25 | 0.25 | | Solution Treated condition - most alloying elements are in solid solution, strength and hardness are low **ATI** The convention in this guide is to measure the lead angle as the angle between the cutting edge and a line drawn perpendicular to the direction of feed. As such, the lead angle of the 80° corner of a CNGN is typically -5°, while the lead angle of a high-feed milling cutter is, for example, 80°. Table continued on following pages ⁶⁴ Solution Treated and Aged condition - secondary phases have been precipitated. Y': Ni, Ti & Ni, Al, so alloys with lower Al and Ti content (like Inconel 718) have less Y' and alloys with more Al and Ti (like IN100) have more Y. The heat treatment (particularly solutioning temperature and aging temperature and time) also affect Y' fraction. Where two sets of values are shown for different hardness, extrapolate cutting speed and chip thickness linearly to obtain starting cutting data for the material machined. e.g., turning H1 steel at 50HRc with GEM-8™: V_i = 750 SFM (225m/min). ⁽Gast irons used as rolls in material processing applications vary greatly in composition, microstructure, and machinability. Cutting speeds range from 130 SFM (40m/min) in particularly hard white irons to 650 SFM (200m/min) in alloyed pearlite. ### | | | | Cutting Speed: V _c [SFM]
Maximum Chip Thickness: H _{ex} [inch] | | | | | Cutting Speed: V _c [m/min]
Maximum Chip Thickness: H _{ex} [mm] | | | | |---|---------------------|-------------------|---|-------------------------------|-----------|---------|--------|---|-----------|---------|--| | | HI | Rc | GEM-8™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | GEM-8™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | | | K4: White Cast Iron | 60 | ٧ _. : | 250 | 250 | 200 | | 80 | 80 | 55 | | | | Ni-Hard, EN-GJN-HV350 — EN-GJN-HV600 | | H _{ex} : | 0.001 | 0.0015 | 0.0025 | | 0.03 | 0.04 | 0.06 | | | | K5: Austempered Ductile Iron (ADI) | V _c : | | | | 1000 | | | | 300 | | | | EN-GJS-800 — EN-GJS-1400 | | H _{ex} : | | | 0.01 | | | | 0.25 | | | | K6: Nitrided and/or Carburized Cast Iron | 64 V _. : | | 250 | 250 | 200 | | 80 | 80 | 55 | | | | K1 and K2 are commonly used as the parent material | H _{ex} : | | 0.001 | 0.0015 | 0.002 | | 0.03 | 0.04 | 0.05 | | | | M1: Austenitic Stainless Steel | | ٧ _. : | | 1300 | | | | 400 | | | | | 304, 316, 301, 201, 202, 205, etc. | | H _{ex} : | | 0.011 | | | | 0.28 | | | | | M2: Martensitic Stainless Steel | 50 | ٧ _. : | | 500 | | | | 150 | | | | | 416, 410, 420, 431, etc. | | H _{ex} : | | 0.0045 | | | | 0.12 | | | | | M3: Super-Austenitic Stainless Steel | | ٧ _. : | | 1000 | | | | 300 | | | | | S31266, 904L, N08031, S34565, 1.4588, etc. | | | | 0.0065 | | | | 0.16 | | | | | M4: Duplex Stainless Steel | | ٧ _. : | | 1300 | | | | 400 | | | | | F51 (1.4462), F53 (1.4410), F55 (1.4501), 255 (1.4507), CD3MN | H _{ex} : | | | 0.011 | | | | 0.28 | | | | | M5: Precipitation-Hardening Stainless Steel | 40 | ٧ _. : | | 1000 | | | | 300 | | | | | A286, PH14-8Mo,
PH15-7Mo, 15-5PH, 15-7PH, 17-4PH, 17-7PH | | H _{ex} : | | 0.0065 | | | | 0.16 | | | | #### Ceramic Wear Patterns While there are always multiple wear mechanisms in play, one will typically be dominant and tool-life limiting. The following are the most common dominant modes of wear when machining with ceramics: #### 1. FLANK: Flank Wear and Edge Rounding Flank wear and edge rounding is what is referred to as 'regular wear' (where all other entries below are jointly described as 'irregular wear'). It is by far the best kind of wear to have. Simply put, it means that the machining process is stable, stresses are carried well, heat distribution does not result in insufficient plasticization or excessive heat in either tool or workpiece, and the tool is being consumed evenly as material is removed. #### 2. RAKE: Chipping Chipping is frequently a result of vibration and instability, or the cutting tool encountering large inclusions along the cutting path that are significantly different (typically harder) from the rest of the material being machined. Chipping leads to an uneven distribution of mechanical stresses and heat along the cutting edge and lowers tool life. Prolonged chipping may lead to flaking. To maximize rigidity, use the strongest tool and fixture available, and reduce tool hangout to a minimum. Cutting forces may need to be reduced through insert geometry and cutting conditions. Lower speed generally corresponds to lower likelihood of hitting harmonics, but it may also be enough to introduce variation in RPM (+/-5% for example) to break up any resonance. If chipping is a result of hitting hard particles in the material — use a heavier edge preparation, and potentially lower the cutting speed to reduce thermal softening of the tool and force of impact. #### 3. RAKE: Flaking Flaking is a more severe version of chipping and may indicate the speed being too low to reach optimal strain rates and plasticization, or the chip thickness being too high resulting in excessive mechanical stress and too much heat leaving the cutting zone with the chip. Prolonged flaking may lead to top-slicing. Optimize cutting speed first since it is the parameter that is of greatest influence in ceramic machining. Make sure that entry into the material and any changes in the direction of the tool path are as smooth and gradual as possible. If the material has particles of high hardness (more common in roll turning) — increase the edge preparation and use an insert with a stronger shape. #### 4. RAKE: Top-Slicing Top-slicing occurs when the mechanical stresses parallel to the surface of the tool exceed the transverse rupture strength of the cutting tool. This is generally a result of excessive chip thickness combined with speed that is too low or too high. In Al₂O₃-based ceramics it's more likely that the speed is too low, while in Si₃N₄-based ceramics it's more likely that the speed is too high. Unexpected top-slicing generally indicates instability. Reevaluate the cutting path to rule out any sudden increases in chip thickness, and reduce cutting conditions, particularly feed rate. #### 5. FLANK: Flank-Slicing Flank slicing is usually a result of impact that exceeds the toughness and transverse rupture strength of the cutting tool. Flank slicing is also an end-case of existing irregular wear and excessive speed. Use a tougher cutting tool grade (e.g. XSYTIN®-1), lower the cutting speed, and once again make sure that everything about the cutting path is as smooth as can be. #### 6. RAKE & FLANK: Chemical Wear Chemical wear occurs as a result of chemical interaction between the tool and the workpiece at elevated temperatures. It is expressed as crater wear on the rake face and aggressive abrasion and ridges on the flank. Reducing the amount of generated (lower cutting speed) and retained (higher chip thickness) heat is somewhat helpful, but cutting tool and workpiece material incompatibility may ultimately mean that another cutting tool should be used. This mode of wear is the least common, provided the material being machined is addressed in this guide and recommendations for cutting tool selection are followed. Particularly aggressive chemical wear looks like mechanical abrasion. #### 7. FLANK: Mechanical Abrasion In instances where mechanical abrasion is the primary wear mechanism the flank of the insert looks like it's been ground by the workpiece after a short time in the cut. The material being machined is probably more like a composite in microstructure — with significant strength and hardness variation between the main phases, and 1) the hardness of the cutting tool is not sufficiently higher than the microhardness of certain phases of the workpiece material 2) the heat retained in the cutting zone is too high 3) there is aggressive chemical wear. Reduce cutting speed and feed, use a heavier edge prep, or ultimately switch to a grade with higher hot hardness (e.g. GEM-8TM). This wear is more common in S3, H4, K4, K6, and M4 material sub-groups. #### 8. FLANK: Notching Notching is mostly mechanical in nature, with the additional chemical element if the temperature at the surface is sufficiently high to allow the cutting tool to oxidize. Otherwise, it's a special case of mechanical abrasion that occurs when a cutting tool that is less resistant to crack initiation is used to machine a material that exhibits heavy strain-hardening, or when a carbide/oxide-rich scale is present. In either case — the hardness of the surface layer is higher than the hardness of the material deeper in the cut, which leads to higher heat generated in the portion of the cutting zone where this harder layer is being removed, which softens the cutting tool sufficiently to enable heavier abrasive wear. This wear is more common with Al₂O₃-based ceramics in S and M material groups, or when removing any hard scale. Straight-edged inserts are generally more susceptible to notching than round inserts (because of the higher edge strength of round inserts) though a much stronger determinant is the lead angle – the lower the lead angle the more likely it is that there will be notching. Lower speed and higher lead angles (or lower depth of cut with round inserts) reduce notching. Ceramics with a combination of high fracture toughness and transverse rupture strength (e.g. XSYTIN®-1) are inherently more resistant to notching and should be used to their full extent. Having found the optimal cutting speed, try increasing the feed rate to widen the notch and reduce the contact time between the tool and the workpiece. #### 9. RAKE: Crater Wear Crater wear is more common in XSYTIN®-1 and is mostly a combination of chemical wear and mechanical abrasion. Unless the crater wear is very aggressive, which would then make it more likely to be predominantly chemical in nature, it is a reliable and manageable wear pattern. Increasing the feed (and reducing the depth of cut if chip thickness should be preserved with a round insert) would move the crater farther from the edge, not compromising the strength and toughness of the cutting tool. Reducing the speed will also reduce the rate at which the crater forms. #### 10.RAKE & FLANK: Fracture Fracture, otherwise known as catastrophic failure, is what happens when ceramic tools are grossly misapplied. And even when grossly misapplied, XSYTIN®-1 will likely not fracture but will show heavy top-slicing that has a deep notch-like appearance from the flank of the insert. # Machining Strategy: Continuous and Lightly-Interrupted Cuts This section of the guide aims to describe how best to apply ceramics in turning to extend tool life. Tool life here is measured in volume of material removed per edge — not minutes. While a WC-Co tool is capable of perhaps 20-30 minutes of tool life in a demanding application, it will remove significantly less material than a well-applied ceramic cutting tool that's been in the cut for 5-10 minutes. The more "difficult" the material machined — the more important it is to adhere to the recommendations put forth in this guide. In order of decreasing "difficulty", they are roughly as follows: S2, S3, S1, H2, K5, K3, M4, M5, M3, H4, K6, K4, M1, H3, M2, H1, K2, K1. #### WC-Co vs. Ceramics It is quite important to note that carbide machining is much more forgiving than ceramic machining —carbide will machine most materials with some degree of success. Because of the toughness and strength of carbide, it does not require as much care when applied — speed being too low is rarely a concern, the variation of mechanical stresses is less detrimental to tool life, inserts with holes are the norm, and positive rake angles can be applied almost indiscriminately of the material being machined. # One cannot apply ceramics in the same fashion as carbide and expect to be successful. In 99% of all cases changing from carbide to ceramics requires rethinking the entire process. But after all is said and done, the productivity and tool life that ceramics offer are more than worth the efforts that go into the extensive trial and implementation period. # Material-Independent Guidelines Regardless of the workpiece material and application, ensuring the wear is regular (so is kept to flank wear and edge rounding) is beneficial to the reliability of the process and will result in higher tool life. To that end, one must consider the following when machining with ceramics: - 1. Rake angles and clearance - Mechanical stresses - 3. Heat distribution - 4. Cutting tool properties #### Rake Angles and Clearance Under normal tool wear circumstances, a tool is said to be "worn out" when the flank wear has developed to the point that surface finish has deteriorated outside of acceptable limits. This is determined when the width of the wear land has decreased clearance and increased heat and pressures in the tool-workpiece interface area to the point that further use will lead to complete failure of the tool by severe flaking or fracture.
Assuming that flank wear is the primary mode of wear, tool life, as judged by wear land development, can be prolonged by increasing the tool side clearance. The same logic applies to increasing rake angles for negative inserts, which is another reason why standard Greenleaf tools for negative ceramic inserts have -10° side rake instead of the -5°-6° common in toolholders for WC-Co. For example, to see the difference that 11° clearance makes compared to 7° clearance, refer to the illustration. (Figure 55a) With a 7° clearance angle, 0.003" (0.07 mm) of material will be worn from the insert to produce a 0.025" (0.64 mm) wear land, whereas 0.005" (0.12 mm) of material must be worn from an 11° clearance insert to produce the same amount of wear land. This will then equate to increased tool life between indexes. It is recommended that tooling be carefully evaluated on all operations relative to using clearance angle inserts. In most cases, investments in new tools can be justified. Standard Greenleaf tools for V-bottom round inserts are designed to take 7° and 11° side clearance inserts. Note that 11° clearance and -10° side rake are only beneficial when wear is regular and the cut is stable. For applications where deflection and vibration are likely because the workpiece material is more difficult to machine and the holder lacks rigidity because of the geometry of the feature machined, 7° clearance will provide higher edge strength and more reliability. #### **Mechanical Stresses** Reducing variation in cutting forces is perhaps the most important because, with lower tensile strength and brittle fracture being the primary mechanism of failure, ceramics are generally not as resistant to impact as WC-Co. The following are instances in which extra care must be taken to protect the edge from irregular wear by avoiding changes in cutting forces: #### 1. Entering and exiting the cut It is highly beneficial to enter the cut on a large radius (rolling in) or at least with a 50% reduction in feed to prevent the sharp edge of the workpiece from damaging the tool while the heat distribution has not reached an equilibrium and plasticization of the workpiece is low. Failure to do so may result in notching (particularly in S materials), chipping, and flaking. Another approach is to pre-chamfer the entry, eliminating first contact with a sharp edge: Exiting the part can also be damaging to the tool, because both the workpiece and the tool can spring back after the load of the cutting force is removed. To avoid this, pre-chamfer the exit or reduce the feed to 50% when exiting the material: In ductile materials (S, M, H2) this also prevents the thin and plasticized wall of material from coiling over and forming a burr. #### 2. Direction and magnitude of cutting forces Always consider the direction and magnitude of the cutting force produced by the chosen tool with respect to the geometry of the workpiece and the location and rigidity of the fixture. The greater the length of the edge engaged in the cut — the greater the cutting forces. So, higher lead angles will result in higher cutting forces, and round inserts will produce higher cutting forces at the same depth of cut than straight-edged inserts at a lead angle of 45° or less. Higher lead angles will also direct a greater portion of the resultant cutting force perpendicular to the machined surface. Machining in a direction that does not have sufficient rigidity in the component — when there is no clear compressive path for the stresses to flow into the fixture, will likely lead to deflection, vibration, and irregular wear. ## 3. Round vs. straight-edged Round inserts should be used in ceramic machining whenever possible, because they are strongest and most versatile. The main downside to using a round insert is that at equal cutting conditions and with the same edge preparation the cutting forces will be significantly higher than with a straight-edged insert (at a lead angle of, say 45°), owing to the higher length of edge in the cut. Higher cutting forces mean higher spindle loads (so one may also run into machine power as a limitation when using round inserts), but also higher mechanical stresses that the component and tool have to carry without deflecting. An extreme case would be the use of a round negative insert for small-ID and large OAL boring — often this is impossible and a straight-edged insert has to be used instead. S and M material groups' tendency to strain-harden, however, means that the higher cutting forces that a round insert produces have to be weighed against the lower resistance to notching of straight-edged inserts, particularly at lower lead angles. Some instances warrant the use of an SNGN for roughing instead. XSYTIN®-1 is particularly well-suited for this in S materials because of its superb resistance to notching — more on this in the section on machining heat-resistant super alloys. ## 4. Turning to a shoulder One of the most common operations encountered in all turning is machining to a flange or shoulder. Regardless of the shape of the insert, approaching the shoulder leaves no room for the chips to flow, trapping them between the tool and the part and increasing cutting forces. If higher spindle loads are observed with a straight-edged insert machining to a shoulder, reduce the feed by 50% in subsequent passes. From the perspective of chip thickness, turning to a shoulder with an insert with a small corner radius actually presents less of a challenge, but as the corner radius grows and round inserts or full-nose grooving inserts are used, more and more material is left at the shoulder for subsequent passes, so that, eventually, the depth of cut grows to the radius of the insert when approaching the shoulder as seen in Figure 57b above. Without a reduction in feed, this causes the chip thickness to increase considerably as the lead angle approaches 0, and causes the cross-sectional area of the chip to grow considerably, increasing the cutting forces. The increase in chip thickness changes the heat distribution, while the increase in cutting forces may exceed the strength of the insert leading to flaking or top-slicing or, in extreme cases, fracture. With access to CAM or validation modules that can track chip thickness and adjust the feed rate when generating the tool path this is no longer a concern because feed will be adjusted in the program with the increasing depth of cut. Otherwise, a reduction of feed on the order of 50% is recommended for the segment of the tool path where depth of cut starts to grow at the shoulder. ## 5. Connecting tool path segments It is paramount to have **NO** sharp points in the tool path. All segments must be connected by a radius, no matter how small, but preferably the larger the better. Any sharp points in the path will result in sudden changes of direction and/or magnitude of cutting forces, or dwell if the feed speed is too high for the dynamics of the machine. That being said, CNC is not a prerequisite for ceramic machining, especially on a lathe. ## 6. Face-turning to center Ceramics do not tolerate near-0 cutting speed because the strain rate approaches 0, as does heat that is so necessary in reducing the strength of the workpiece material and thereby reducing cutting forces. It is generally not recommended to machine with ceramics in conditions that approach 0 cutting speed. Some exceptions can be made and it can, on occasion, be done successfully, but as a rule — drill a hole with carbide before face turning whenever possible. **ATI** ## **Heat Distribution** As previously mentioned in the section on chip thickness, heat generation and evacuation are pivotal in the ceramic machining process. Since chip thickness is affected by the lead angle and feed, chip thickness for round inserts is a function of the radius of the insert, feed, and depth of cut. Using a smaller or larger insert, or changing the depth of cut with a round insert will change the chip thickness and affect the heat distribution. Increasing the chip thickness removes more heat from the cutting zone, and reducing the chip thickness does the opposite. The best scenario is one where a CAM or validation module is used to monitor the chip thickness to adjust the feed rate based on the radius of the insert and the depth of cut at which the insert is currently engaged. Failing that, feed rates need to be programmed manually so that the chip thickness that is found to be optimal at a given speed is kept constant. Changes to chip thickness alter the heat distribution and will likely lead to irregular wear, lowering tool life. This is especially important in the machining of S-class materials, but also applies to all ceramic machining. ## Cutting Tool Material Properties Al_2O_3 -based ceramics are inherently different from Si_3N_4 -based ceramics. Alumina-based grades are harder, more wear-resistant, more chemically stable at higher temperatures, but less resistant to notching whereas silicon nitride is tougher, stronger, more resistant to thermal shock, but starts to oxidize around $1000^{\circ}C$ (1832 F). It is no surprise then, that applications requiring wear resistance and hot hardness are best tackled with whisker-reinforced ceramics, while applications requiring strength, toughness, and resistance to thermal shock should be addressed with XSYTIN $^{\circ}$ -1. It also follows that, as far as optimal chip thickness is concerned, having a lower chip thickness is more damaging to XSYTIN®-1 (too much heat), and having a higher chip thickness is more damaging to whisker-reinforced ceramics because the mechanical stresses may be too high, or there may be insufficient plasticization. Some materials remain ductile and retain strength despite high strain rates and plasticization, and so require cutting tools that exhibit both high fracture toughness and transverse rupture strength. These materials, previously not machinable with ceramics, can
now be machined with XSYTIN®-1. ## Material-Specific Guidelines ## Heat-Resistant Super Alloys (S) The importance of chip thickness in machining of heat-resistant super alloys cannot be overstated. Suffice it to say that if you deal with the production of large quantities of complex components in nickel- or cobalt-based HRSAs then tool life and therefore cost of tooling per component could be dramatically improved through the use of a CAM or verification module that has the ability to adjust programmed feed to keep chip thickness constant. Nickel- and cobalt-based alloys are very susceptible to strain-hardening. This means that even if there isn't a carbide/oxide-rich forging scale, the surface of the component after every subsequent pass in turning or milling is harder than the rest of the workpiece. The strains that the surface is subjected to as it is being machined dictate the degree to which strain-hardening occurs. So, using a negative ceramic insert with a negative edge preparation at negative rake angles will strain-harden the surface considerably more than a very positive carbide insert with a positive chipform and 0 or positive rake. Regardless of which machining method preceded the operation now being addressed with ceramics — the surface is harder, and, unless specific measures are taken, notching is a concern. Because of differences in material properties, whisker-reinforced ceramics are more prone to notching than XSYTIN®-1. The best tool path for WG-300® can vary significantly from the best tool path for XSYTIN®-1. ## Forging Scale Removal Forging scale in S materials goes hand in hand with some degree of runout and presents the first challenge in machining. One false assumption that should be dispelled is that the depth of cut must be kept low to reduce stresses and prevent the insert from flaking – on the contrary, because of the quantity of large, hard particles, keeping the depth of cut low will result in aggressive abrasive wear that will grind down the flank, weakening the edge and making catastrophic failure more likely. The cutting edge should be below the scale for as much of every revolution as possible ideally 100% of the time. The higher the runout, however, the higher the maximum depth of cut needed to keep the edge of the insert in clean material for scale removal. This means higher cutting forces, a higher lead angle for round inserts, and a higher chance of notching. Due to their higher edge strength and resistance to notching, round inserts are generally recommended for forging scale removal; but if the radial runout and cutting forces are too high, manifesting as deflection, vibration, or high spindle loads, a straight-edged insert in XSYTIN®-1 at a lead angle of 45° or higher can be used for outstanding results instead. Because of the difference in hardness between the scale and the material below it, it is almost impossible to find a set of cutting conditions at which the wear would be regular in both, so some notching is always expected. However, with XSYTIN®-1's transverse rupture strength and toughness, we are able to apply it at conditions that are optimal for the hardness of the scale without fearing irregular wear in base material. It is recommended to reduce both speed and chip thickness by 20-30% from optimal cutting conditions in clean material for both XSYTIN®-1 and whiskerreinforced ceramics when machining forging scale. ## **Roughing: Straight Cuts** Whisker-reinforced ceramics and XSYTIN®-1 are both extremely capable of productive and reliable roughing of heat-resistant super alloys that can reduce cycle times by a factor of 4 or more compared to coated carbide. Whisker-reinforced ceramics generally perform better in stable environments capable of sustaining high speeds without any loss of rigidity or increase in vibration. XSYTIN®-1 performs better in applications with cutting speed limitations, in unstable environments, but in machines that are nevertheless capable of producing enough power at the spindle, because with the lower strain rates and higher chip thickness that are optimal in applying XSYTIN®-1, cutting forces can be as much as double those for WG-300°. This also makes sense because the transverse rupture strength of XSYTIN®-1 is roughly double that of WG-300° and cutting tools should be applied at the limit of their material properties to maximize productivity. #### Whisker-Reinforced Ceramics ## 1. Optimal depth of cut When notching is the primary mode of wear – i.e., the wear that progresses quickest and ultimately limits tool life, round inserts and straight-edged inserts with a corner radius should be applied at or below 45° radial engagement. The higher the lead angle – the higher the component of the cutting force acting perpendicular to the cutting edge — the stronger the notching. Reducing the depth of cut while keeping the chip thickness constant, however, reduces the rate of metal removal, because the increase in feed does not keep the cross-sectional chip area constant. And so, the right compromise between tool life and productivity must be found. When notching is not the primary concern and wear is regular, a better balance between the rate of metal removal and wear is reached at 60° engagement with round inserts in whisker-reinforced ceramics. ATI ## 2. Taking fewer passes Reducing contact time is generally beneficial to wear so long as the same or higher quantity of material is removed per operation. So, when applying a straight-edged insert, and so long as cutting forces aren't too high — the wear is regular, there is no deflection-vibration, the spindle load is not too high — take fewer passes at a higher depth of cut instead of multiple passes at a lower depth of cut. This also extends tool life by using more of the insert, distributing the wear over a greater portion of the cutting edge. ## 3. Varying the depth of cut Since notching occurs at the depth of cut it makes sense to distribute the notching and vary the depth of cut between passes instead of repeating multiple passes at the same depth of cut. If notching is the primary mode of wear - depth of cut should be reduced with each subsequent pass to present an un-notched edge to the cut. If wear is regular then depth of cut should be increased with each subsequent pass instead. Always keep in mind that with round inserts changing the depth of cut affects lead angle and feed rate must be adjusted to keep the chip thickness constant. ## 4. Ramping The best way to vary the depth of cut if notching is the primary mode of wear is to vary it continuously by ramping. Ramping on straight cuts can be done with both negative and positive inserts. Negative inserts can only be used to ramp out and then ramp in by doing a subsequent straight pass (as in Figure 61d) while positive inserts can be used to ramp in, plunge, and carry out sinusoidal ramping (as in Figure 61e) though ramping out following a plunge is preferable because the cross-sectional chip area decreases as wear increases – resulting in lower peak loads than ramping in. Note that in all cases, optimal chip thickness must be kept as close to constant as possible for a given speed. For passes that are sufficiently short — say, a minute or less in cut time, split the ramp into four segments and assign a feed value to each segment that would, on average, result in the right chip thickness. For longer passes — increase the number of segments. Finally, the more aggressive (steep) the ramp — the more segments should be programmed to reduce the variation in chip thickness. **ATI** #### XSYTIN®-1 Because XSYTIN®-1 is considerably stronger and more resistant to notching but less stable at higher temperatures compared to whisker-reinforced ceramics, the main concern when applying XSYTIN®-1 is to avoid any tool paths where the chip thickness drops off and the heat in the cutting zone increases beyond optimal levels. Since notching is generally less common, there is less need to vary the point of contact between the surface of the workpiece and the tool. In fact, ramping, especially when depth of cut is low, can be detrimental to tool life because the chip is not sufficiently thick to carry enough heat out of the cutting zone. ## 1. Optimal depth of cut Because of heat, optimal cutting speeds for XSYTIN®-1 are always lower than those for whisker-reinforced ceramics. Because of the lower strain rates, the material is typically more ductile and stronger, and requires higher effort to be sheared off. Because of the increased ductility the chip also doesn't break as easily, which can lead to crater wear. To avoid crater wear entirely, the optimal depth of cut for round XSYTIN®-1 inserts even where whisker-reinforced ceramics notch, is greater than 60°-65° radial engagement. The higher the curvature of the chip (the higher the depth of cut with a round insert) the less likely it is that the chip will stay intact as it separates from the workpiece. ## 2. Taking fewer passes Reducing contact time is generally beneficial to wear so long as the same or higher quantity of material is removed per operation. While the cutting forces aren't too high — wear is regular, there is no deflection-vibration, the spindle load is not too high, take fewer passes at a higher depth of cut instead of multiple passes at a lower depth of cut. #### 3. Round vs. straight-edged Because of XSYTIN®-1's resistance to notching and edge strength, straight-edged inserts (SNGN, for example) can be used at 45° or higher lead angles in heat-resistant super alloys to reduce cutting forces at the same depth of cut, or significantly increase metal removal rates at the same spindle load. ## Roughing: Opening Cavities The two mechanically different approaches to opening cavities are grooving and profiling. While grooving is indisputably more productive, it is also more costly, and generally requires more sister tooling. Profiling (the use of a v-bottom positive round insert or a
full-nose grooving insert) is the most cost-effective, but not the fastest. There are, ultimately, three styles of inserts, then, that can be used in combination to open cavities: - V-bottom positive rounds e.g., RPGN-3V - Full-nose grooving inserts e.g., WG-6250A, where the last three digits denote the width of the insert in 1/1000ths of an inch, and the 'A' stands for 'A-hone' - Flat-nose grooving inserts e.g., WG-6250-2A, where the last digit indicates the corner radii of the insert in 1/64ths of an inch ## Grooving When the corner radii of the cavity are small (0.050" / 1.2mm or less) using a flat-nose grooving insert makes the most sense, but notching is difficult to avoid with partial engagement of the insert. If the material being machined is sufficiently strong (e.g. all S2 alloys in the STA condition), chips will shear off well and burring will not occur. If, however, we are grooving an S1 alloy, it is likely that following the method shown in Figure 63a will result in a thin wall of the material peeling off despite the fact that the width of the machined area is smaller than the width of the insert. To avoid this, and assuming some productivity can be sacrificed for reliability, we recommend using a full-nose grooving insert or a round v-bottom insert to profile the cavity as discussed in the 'Profiling' section below. Alternating the plunge order to engage the insert fully instead of stepping over and having a slight imbalance in cutting forces with higher susceptibility to notching is not recommended because the flanges left to machine between grooves are generally not rigid, which, combined with the relative flexibility of the grooving blade typically leads to vibration and irregular wear. Note that grooving with a round V-bottom insert or a full-nose grooving insert is an exceptionally stable and effective operation, provided the machine has enough power and the workpiece/tool/fixture are sufficiently rigid. The only downsides are the scallops that are left and have to be machined at the end, any resulting burrs, and the difficulty in chip breaking. The feed rates recommended for grooving differ from the feed rates recommended for regular turning because the cutting forces that would be produced if regular chip thickness recommendations were followed would exceed the strength of the cutting tool for most narrow groovers. Instead, use the same cutting speed as in turning, but determine the feed from Figure 63b below: For XSYTIN®-1, increase the feed from the determined value by a factor of x1.5. ## **Grooving and Profiling** An alternative to the methods above would combine a flat-nose grooving insert and a round (RPGN or WG-XXXX) insert using the flat-nose groover first, removing the remaining stock with a round, and doing a final blend cut with the flat-nose groover if necessary. ## **Profiling** Provided the corner radii of a cavity are sufficiently large, profiling is a method that requires only one tool to complete the operation. Here a V-bottom round insert or a full-nose grooving insert are used to feed in multiple directions. #### Whisker-Reinforced Ceramics To avoid notching, the most effective method of profiling with whisker-reinforced ceramics is ramping. To start the cut, one can either plunge into the material or ramp into it — both with their pros and cons. Plunging allows ramping out, which alleviates the stress on the tool towards the end of the cut. Because we need to avoid any sharp corners in the tool path, however, plunging should be connected to the ramp by a radius sufficiently large to allow the machine to execute the cut with no sudden changes in direction, which is slightly more difficult to program while keeping the chip thickness constant. Plunging on a radius followed by feeding perpendicular to the axis of the tool is known as trochoidal turning. With whisker-reinforced ceramics, plunging on a radius is a great way to enter the material, provided the path then follows a ramp (in or out) and chip thickness is kept constant throughout. Ramping in is generally better for mechanical stresses, but will end with the insert at its highest wear approaching the shoulder. In the following passes, this tool path will require a significant reduction in feed when approaching the shoulder because the depth of cut will grow to the radius of the insert, where the lead angle and chip thinning are 0. Throughout both ramping methods, chip thickness must be kept constant to preserve the balance of heat. Plunging should be done at a feed rate equal to the recommended chip thickness since the chip thickness then equals the feed rate, with feed rate adjusted in all other paths to conserve chip thickness for the given speed and insert radius. ## XSYTIN®-1 Since notching is generally not a concern, profiling with XSYTIN®-1 needs only to minimize the variation in mechanical stresses but depth of cut can usually be kept constant. Ramping where the depth of cut is below 60° engagement is not recommended. Ramping, in general, is not needed and the most efficient and productive method is to use trochoidal turning. When programming the tool path, use a radius of twice the radius of the insert for entry and exit to reduce radial engagement. And as always, adjust feed rates to keep chip thickness constant throughout. ## Radial Engagement a.k.a. Wraparound One final aspect that should be considered when profiling is the direction from which a cut should be executed given surfaces that do not meet at a right angle. ## Semi-Finishing Semi-finishing is an operation that is carried out at a low depth of cut and removes any material left over by larger inserts, mismatches, excessive internal surface stresses, and otherwise prepares the workpiece for finishing. ## **Fillets and Shoulders** The most common semi-finishing operation requires the removal of material left behind by round inserts in corners. To avoid notching, the best methods are as follows: ## Figure 65c Ramping Effect on Shoulder Cuts In this method, a CNGN452 (12 07 08) insert is shown in the finish operation on a fillet roughed with a RNGN45 (12 07 00) insert leaving a .250" (6,3 mm) radius. The finish operation is performed by feeding several times into the fillet. It is essential when the wall is reached to immediately raise the tool vertical to remove the scallop which would otherwise be left on the wall. This material will tend to cool and present a hardened, irregular surface needing a subsequent operation. The finish passes described will tend to notch the tool and should be programmed at various depths to reduce this effect. The final pass should be less than the 45° line of the tool nose radius. **ATI** ## **Corners in a Cavity** Semi-finishing of corners in a cavity requires the use a flat-nose grooving insert to produce the corners and blend the cut, as seen in Figure 66a. # Turning to a Shoulder in Cavities with V-Bottom Grooving Inserts This example shows the profiling of the groove or cavity using a V-bottom grooving insert. It is important to keep the finish stock very light on the sides so that the cut is below the 45° mark on the insert radius. This will vary with the radius needed. The larger the radius, the greater the stock can be. In the corner itself, we use the "ramp" inherent in the radius left by the round insert used for roughing to reduce or eliminate notching of the tool. This is a further benefit of roughing with round inserts or profiling the corner in the program. OR.#1 OR.#2 OR.#2 A5° Ramping Effect Ramping Effect ## **Finishing** Watch the depth-of-cut line! Finishing is the final stage of machining that leaves the surface in the desired condition with the appropriate Ra, Rz, acceptable thickness of deformed layer, and magnitude of internal stresses. Because of the very strict requirements on surface quality of heat-resistant super alloys, particularly in critical rotating parts in aircraft engines, the finishing is typically done with WC-Co tools. Greenleaf's whisker-reinforced ceramics, however, are exceptionally well-suited for the task of finishing heat-resistant super alloys. Leaving less than 0.0079" (0.2mm) of stock material for finishing is not recommended, especially when using the T1 edge preparation — the insert may refuse the cut, bouncing along the surface and smearing the material instead of cutting it. However, GF-1 (below) is able to take much lower depths of cut consistently and reliably — as little as 0.002" (0.05mm). Leaving too much material poses the risk of notching, as seen in Figure 66b below. The ideal amount of material would be such that the straight-edged insert executing the finish cut is engaged to 45° of the corner radius. #### WG-600 Following grinding, the edge of any ceramic (or CBN/PCD) insert is ultimately a well-aligned collection of jagged peaks. The coating of WG-600® levels these peaks out, providing a smoother surface with which to remove material, which itself produces a smoother surface (especially after the coating has "worn in" slightly) and protecting the substrate from heat and abrasive wear. With the high strain rates and plasticization of whisker-reinforced ceramics in heat-resistant super alloys, chips separate well and the surface finish is excellent. #### GF-1 GF-1 is a chipform that Greenleaf adds to round v-bottom inserts that makes the cut more positive. Combining the high strain rates and plasticization of ceramic machining with the positive rake angle of GF-1 significantly reduces the cutting forces and compressive stresses that the surface is subjected to. The result is a surface with fewer defects and a lower thickness of deformed layer than what is commonly seen in finishing with WC-Co tools. Multiple OEMs and share partners have certified WG-300°/WG-600° GF-1 for finishing of critical rotating components in gas turbines. | Roughness average
Micro inches (Ra) | | 8 | 16 | 32 | 63 | 80 | 100 | 125 | 150 | 200 | 250 |
--|----------------|-------|-------|-------|-------|---------------|------------|-------|------|------|------| | Micro meter (μm) | | 0,2 | 0,4 | 0,8 | 1,6 | 2,0 | 2,5 | 3,1 | 3,8 | 5,0 | 6,3 | | | Nose
radius | | | | Fee | ed rate per r | revolution | | | | | | Inches | .0156 | .002 | .0025 | .004 | .0055 | .0065 | .007 | .0075 | .008 | .010 | .011 | | mm | 0,40 | 0,05 | 0,06 | 0,10 | 0,14 | 0,17 | 0,18 | 0,19 | 0,20 | 0,25 | 0,23 | | Inches | .0313 | .003 | .004 | .0055 | .008 | .009 | .010 | .011 | .012 | .014 | .016 | | mm | 0,79 | 0,08 | 0,10 | 0,14 | 0,20 | 0,23 | 0,25 | 0,28 | 0,30 | 0,35 | 0,41 | | Inches | .0469 | .0035 | .005 | .007 | .0095 | .0105 | .012 | .013 | .015 | .017 | .019 | | mm | 1,19 | 0,09 | 0,13 | 0,18 | 0,24 | 0,27 | 0,30 | 0,33 | 0,38 | 0,43 | 0,42 | | Inches | .0625 | .004 | .0055 | .008 | .011 | .0125 | .014 | .015 | .017 | .020 | .022 | | mm | 1,59 | 0,10 | 0,14 | 0,20 | 0,28 | 0,32 | 0,35 | 0,38 | 0,43 | 0,50 | 0,56 | | Inches | .0938 | .0045 | .007 | .009 | .013 | .015 | .017 | .019 | .021 | .023 | .026 | | mm | 2,38 | 0,11 | 0,18 | 0,23 | 0,33 | 0,33 | 0,43 | 0,43 | 0,53 | 0,58 | 0,66 | | Inches | .125 | .0055 | .008 | .011 | .016 | .018 | .020 | .022 | .024 | .027 | .031 | | mm | 3,13 | 0,14 | 0,20 | 0,23 | 0,41 | 0,45 | 0,50 | 0,56 | 0,60 | 0,69 | 0,79 | | Inches | .1875 | .007 | .0095 | .0135 | .017 | .021 | .025 | .027 | .030 | .034 | .040 | | mm | 4,76 | 0,18 | 0,24 | 0,34 | 0,43 | 0,53 | 0,64 | 0,69 | 0,76 | 0,86 | 1,02 | | Inches | .250 | .008 | .011 | .016 | .022 | .025 | .027 | .031 | .034 | .040 | .044 | | mm | 6,35 | 0,20 | 0,28 | 0,41 | 0,56 | 0,65 | 0,69 | 0,79 | 0,86 | 1,02 | 1,12 | ## **Thin-Walled Components** Components with thin walls are quite common in gas turbines. Because of the lack of rigidity, special measures must be taken to ensure that the component is produced reliably and efficiently. - 1. Reduce and redirect cutting forces if there is deflection and/or vibration. - a. Use smaller-radius round and full-nose grooving inserts. - b. Use smaller-corner-radius straight-edged inserts. - c. Use a toolholder with a lower lead angle for straight edged-inserts. - d. Use positive inserts at $0^{\circ}/0^{\circ}$ rake instead of negative inserts at $-5^{\circ}/-10^{\circ}$ - e. Use a lighter edge preparation for more positive cutting (uncoated instead of coated, un-honed instead of A-hone, A instead of T1, T1 instead of T1A, T1A instead of T2A, or GF-1 instead of a flat top, for example), lowering the compressive stress in the deformed layer of the workpiece material. - f. Reduce the cutting speed and chip thickness proportionately. - Use whisker-reinforced ceramics instead of XSYTIN®-1 to reduce cutting forces so long as high-RPM machining is stable – there is no vibration at high speed. - Use XSYTIN®-1 if whisker-reinforced ceramics notch too quickly or if higher speed leads to vibration but the part and fixture can handle higher cutting forces at lower RPM - Do not continue to cut with an edge that exhibits irregular wear avoid irregular wear at all costs - Apply high volume of coolant to the cutting zone to prevent the thin walls from becoming too saturated with heat — this may alter the microstructure of the material, scrapping the part The following are two examples of thin-walled applications where simple adjustments to the process solved the problem: ## **Test Ring Production** It is possible to make shoulder cuts with grooving tools involving the removal of large amounts of material by producing a complete ring. This technique is being applied in the production of large gas turbine discs very effectively but requires a special set-up. The method is illustrated in Figure 69a. In effect, two 90° opposing grooves are plunged into the part using a V-bottom grooving tool. This generates two clean walls and the required corner radius. When the second groove breaks into the first one, a complete ring is produced. A fixture must be used to hold the ring as it parts from the main forging or else the tool will be damaged. It is worth constructing a special clamping fixture for such cases since the method itself is so economical. ## Cut-Off Face-turning or grooving to center reduces the cutting speed to 0, which ceramics generally don't tolerate. If it must be done — use XSYTIN®-1. Not reducing the speed to 0 is still very much preferred. Using a whisker-reinforced ceramic grooving tool and then completing the cut-off with a drill or boring tool in a secondary operation is shown in Figure 69b. This technique works best with smaller components where the cut-off piece can be captured on the drill or boring tool. ## Coolant Note: This section of the guide concerns continuous cuts and very light interruption only. The heat produced in ceramic machining as a result of strain is beneficial, but having the heat accumulate in the workpiece and tool is generally detrimental to tool life. Coolant does not affect the heat distribution in the cutting zone, but it does influence the capacity of the tool and workpiece to carry heat away from the cutting zone. Excess heat conducted into the tool and workpiece from the cutting zone should be removed through coolant. Higher flow rates are more beneficial than higher pressure, though high-pressure coolant (HPC) will evacuate (and segment) the chips more expeditiously. HPC should be kept below 65bar for finishing operations – higher pressure of coolant tends to bombard the finished surface with the chips, resulting in a shot-peening effect. Oil-based, water-soluble, emulsion-type coolants are best. The use of straight oils is to be avoided since the hazards of oil smoke and fire exist. The delivery of coolant is quite important, particularly in grooving operations. It should be delivered as close to the cutting edge as possible, preferably through the clamp or tool. ATI ## Stainless Steel (M) ## M1, M2 (low-carbon), M3-M5 All the best practices covered in the section on machining S-class materials apply to the machining of stainless steel. There are two major distinctions that make austenitic, duplex, or low-carbon martensitic stainless steel more difficult to address with ceramics than even heat-resistant super alloys: - Because of the lack of high-temperature-strengthening mechanisms, the heat produced by the strain of ceramic machining lowers their strength to such an extent that the plastic deformation regime is dramatically extended. This means that the strain rates produced with negative inserts at standard rake angles at 1300 SFM (400m/min) are not sufficiently high to cause the deformed layer of the workpiece material to separate cleanly and segment as a result of further deformation (as intended in option 1 described in 'Chip Formation'), instead coiling off but remaining intact. Or rather, they would be sufficiently high if a high enough chip thickness could be sustained to evacuate much more heat from the cutting zone. But increasing the chip thickness increases mechanical stresses to where the strength of the cutting tool or the power available at the spindle are exceeded. - XSYTIN®-1 is typically not recommended in stainless steels. In short — only whisker-reinforced ceramics should be used, and breaking the chip is very difficult. There are some exceptions, of course: - The free-machining grade 303 (304 with added sulfur) drastically lowers high-strain ductility of an otherwise very ductile 304, and chips form well. - Cold-worked stainless steel is harder, stronger, and more brittle because of the higher density of dislocations introduced through strain-hardening. - Precipitation-hardened stainless steels generally have higher strength at elevated temperatures, which can be exploited in chip formation as it is in heat-resistant super alloys. So higher-hardness PH stainless has more favorable chip formation. In all other cases — high-pressure coolant is helpful but not by any means the conclusive solution to chip-breaking. So long as there is no or limited notching, increasing the depth of cut with a round insert will improve chip-breaking. So will increasing feed and reducing speed. Using positive inserts will produce a cleaner surface but will not help break the chip. Primary modes of wear are flank wear and crater wear, while notching is usually an indicator of excessive cutting speed, wrong insert geometry, or poor coolant delivery. ## M2 (high-carbon) High-carbon martensitic stainless steels have a similar microstructure to conventional hardened steel that is brittle at higher strain rates. Machinability is good, and positive inserts are usually not required. Strain-hardening is almost non-existent, so notching is rarely a concern. For workpieces with a hardness higher than 55 HRc, the edge preparation should always have a hone, and heavier lands may be required. Coolant should then not be applied. Primary wear is flank wear. Chipping and flaking are usually signs of insufficient cutting speed, and abrasive wear — that the speed is too high. #### Coolant See Heat-Resistant Super Alloys. ## Hardened Steel (H) ## H1, H3 Hardness and ductility in H1 and H3 steels are inversely proportional. So, at lower hardness edge preparations can be light, while beyond 50-55 HRc a wider (or even secondary) land is beneficial to tool life. Whisker-reinforced ceramics and XSYTIN®-1 are both very capable of turning the full range of hardnesses though XSYTIN®-1 generally performs better in softer steels and whisker-reinforced ceramics are preferable beyond 50-55 HRc. At optimal cutting conditions, primary wear is flank wear for alumina-based grades and crater wear for silicon nitride grades. Chipping and flaking may indicate that the speed is too low, while aggressive abrasive wear is usually a result of the speed being too high. Coolant should not be used. ## H2 Maraging steel is very difficult to machine. It is exceptionally strong, yet ductile, and cutting forces easily exceed those
found in the machining of HRSA. XSYTIN®-1 is much better suited for the rough turning of maraging steel (in the tempered condition) than any other Greenleaf ceramic grade. The edge needs to be sharp (A-hone in the majority of cases), and to reduce cutting forces straight-edged inserts can be used instead of rounds. The primary mode of wear is crater wear. Excessive speed or chip thickness result in chipping. High volume and/or pressure of coolant delivered to the cutting edge is essential. ## **H4** Carburized and/or nitrided steel is exceptionally abrasive, with large grains of carbides/nitrides between the grains of the parent alloy. GEM-8™ and whisker-reinforced ceramics are the primary choice, with heavy edge preparations to reduce abrasive wear and chipping in the white layer. Depth of cut should be sufficiently high to always be in the material, but not so high that the insert cuts through a very steep hardness gradient, though the white layer will always be considerably harder than the diffusion zone. Round inserts are strongly recommended. Primary wear is abrasive wear. Chipping is common. Coolant should not be used. Unless the parent material is a low-carbon steel and the turning operation cuts into the diffusion zone — then the chips tend to stay intact and coolant will extend tool life appreciably. ## Cast Iron (K) ## K1, K2 Grey and nodular cast iron (not the kind used in roll production) are probably the easiest to machine among all the materials discussed in this guide. Shear strength is low since the material is brittle and cracks grow easily, and graphite lubricates the cut. GSN100™ is the best grade and T2 and T2A are the only edge preparations needed. Primary mode of wear is flank wear. Chipping and flaking are an indication of the speed being too low, the chip thickness being too high, or insufficient rigidity in the machining operation. Coolant can be used but serves no purpose in the cutting process. ## K3, K5 Most 'hybrid' materials are much more difficult to machine than either of the materials whose properties or microstructures they aim to combine. Such is the case with compacted graphite iron and austempered ductile iron. Other ceramics generally don't have the combination of fracture toughness and transverse rupture strength required to machine CGI and ADI, XSYTIN®-1 being the exception. Primary wear is flank wear, and T2 or A-hone can be used depending on the needs of the application. Irregular wear is uncommon and will only appear when the combination of chosen speed and chip thickness lead to excessive heat. Coolant can be used but serves no purpose in the cutting process. ## K4, K6 With the very high fraction of cementite and other carbides, K4 and K6 are more cermet than regular alloy. Extra care needs to be taken to protect the edge from chipping and abrasion — heavy edge preparations and high lead angles are recommended. Notching and flaking are possible when removing the scale — round inserts will work best there. With the right edge preparation (cases where special edge preparations have been necessary are not unheard of) and cutting conditions in clean material the primary mode of wear is flank wear. The choice between alumina-based grades and XSYTIN®-1 depends on the needs of the operation though higher hardness is a better fit for alumina-based grades rather than XSYTIN®-1. Coolant should not be used. # Machining Strategy: Interrupted Cuts and Milling Interrupted cuts are an area where most experienced machinists would not choose to use ceramics, because the first ceramics introduced in cutting tools were, understandably, less than promising in terms of impact toughness. The stigma of ceramics lacking toughness persists. In the meantime, Greenleaf's whisker-reinforced ceramics and XSYTIN®-1 have been successfully implemented in heavily interrupted cuts (weld-overlay Stellite-6 with a 50% interruption in conical valves, for example) and milling in most of the materials addressed in this guide. The main difference in applying ceramics and WC-Co tools in interrupted cuts comes from the fact that ceramics, being more brittle, do not tolerate thermal shock as well as carbide. Large variation in temperature of the inserts results in accelerated crack growth that leads to weakening of the tool and irregular wear. Additionally, continuous cuts differ from strongly interrupted cuts in that the heat builds up from the moment the tool enters the material and reaches an equilibrium, with a constant amount of heat remaining in the cutting zone and plasticizing the material ahead of the cut. Interrupted cuts, provided they are executed at the same cutting speed as continuous cuts, therefore result in the heat never reaching the necessary levels for optimal plasticization. To tackle both thermal shock and insufficient plasticization, cutting speed must be increased when interruptions are present. The degree to which the speed is increased, however, is different for turning and milling, and for whisker-reinforced ceramics and XSYTIN®-1. ## Interrupted Turning ## Whisker-Reinforced Ceramics For whisker-reinforced ceramics, it is recommended to increase the speed sufficiently to compensate exactly for the missing material. That is to say, if 50% of the material is taken away by voids or interruptions at the surface, 50% of the surface remains in contact with the tool compared to an uninterrupted part and the cutting speed should be doubled. If 30% of the material is missing, then RPM should be calculated as if the circumference/diameter is actually 70% of what it is, resulting in $1/0.7 = 1.428 \sim 43\%$ higher RPM, etc. To further increase the amount of heat that remains in the material, feed rates should be decreased from where they would be for continuous cuts. To protect the edge from impact and redirect more of the incident cutting force into the insert (loading it more in compression instead of bending) heavier edge preparations are recommended for whisker-reinforced ceramics in interrupted cuts — T2A or T7A. Feed rates should be kept below the width of the land — less than 0.0059 IPR (0.15mm/rev) for T2A and less than 0.0138 IPR (0.35mm/rev) for T7A. ## XSYTIN®-1 The peak temperature reached by XSYTIN®-1 is of higher importance than the average temperature in the cutting zone (for plasticization) and since XSYTIN®-1 is significantly more resistant to mechanical impact and thermal shock than whisker-reinforced ceramics, cutting speed should not be increased as much. In some cases, wear is actually improved when XSYTIN®-1 has the opportunity to cool down before reentering the material. As a rule of thumb, increase cutting speed by X% when X% of material is missing. Because of the much higher edge strength of XSYTIN®-1, sharper edges are actually preferred in interrupted cuts, to reduce the overall magnitude of the impact, so the recommended edge preparation for severe interruptions and milling is A-hone. No feed reduction is generally required in interrupted turning for XSYTIN®-1. ## Milling Since milling is essentially a special case of interrupted turning one would think that the adjustments in cutting conditions are similar, but they aren't. This is due to the fact that the chip thickness evolves for each sweep of the insert in the milling cutter through the machined surface. For round inserts, average chip thickness H_m is a function of - 1. Effective diameter, D_{eff} - 2. Width of cut, A - 3. Radius of the insert, R - 4. Depth of cut, A - 5. Feed per tooth, F. $$H_m \approx F_z \sin(\cos^{-1}(1 - A_p/R)) \sqrt{A_e/D_{eff}}$$ For straight-edged inserts, average chip thickness H_m is a function of - 1. Effective diameter, D_{eff} - 2. Width of cut, A. - 3. Lead angle, K - 4. Feed per tooth, F_z $$H_m \approx F_z \sin(K_r) \sqrt{A_e/D_{eff}}$$ ## Material-Independent Guidelines Many considerations in ceramic milling are similar to those in turning. - Mechanical stress variation needs to be kept to a minimum, so that - Entry/exit into the material should be soft, and kept to an absolute minimum – staying in contact with the workpiece will drastically extend tool life - Tool path radii need to be as large as the workpiece would allow, with absolutely no sharp points - Ramping in is always significantly better than plunging or a straight entry - The shortest possible arbors are to be used to reduce deflection and vibration of the tool - The direction and magnitude of cutting forces need to be accounted for with respect to the rigidity of the workpiece and fixture, again, to reduce deflection and vibration - Heat distribution should be kept constant as much as possible, so that - Chip thickness is kept constant for varying width of cut (engagement) and depth of cut - Speed is increased when engagement drops below 65% - Staying in contact with the workpiece is preferred to exit and re-entry The importance of the tool path cannot be overstated. The programming makes or breaks a ceramic milling application. ## Additionally: - The machine needs to have sufficient power for the dramatic increase in metal removal (and associated increase in spindle loads), particularly in heavy milling applications with XSYTIN®-1 - The machine needs to have a sufficiently high spindle speed, because 3280 SFM (1000m/min) with an effective diameter of 0.630" (16mm) translates into ~20.000 RPM - The machine needs to be closed. Molten chips leaving at 3280 SFM (1000m/min) can be a safety hazard. ## **Material-Specific Guidelines** The recommended speed and chip thickness for 65-100% engagement are shown in the table below # When engagement is lower than 65%, speed should be increased further. Note that these are the recommended starting cutting conditions. You may need to adjust both speed and chip thickness up or down to optimize the process for your unique machining environment. ## Speed and Chip Thickness Recommendations — Milling | | | | Cutting Speed: V _c [SFM] Average Chip Thickness: H _m [inch] | | |
Cutting Speed: V _c [m/min]
Average Chip Thickness: H _m [mm] | | | | |---|--------|------------------|---|-----------|---------|--|-----------|---------|--| | | Н | Rc | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | | | S1: Corrosion-Resistant HRSA | | ٧ _. : | 4600 | 3600 | | 1400 | 1100 | | | | Inconel 625, Incoloy 825, Hastelloy, Monel | | H _m : | 0.003 | 0.0045 | | 0.08 | 0.12 | | | | S2: High-Strength HRSA (Solution-Treated ^[3]) | 20 | ٧ _. : | 3950 | 3000 | | 1200 | 920 | | | | | | H _m : | 0.003 | 0.0045 | | 0.08 | 0.12 | | | | Low γ′ ^[4] S2 (Solution-Treated and Aged) | 40-45 | ٧ٍ: | 3450 | 2600 | | 1050 | 800 | | | | Inconel 706, Inconel 718, Inconel 725 | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | | High γ' S2 (Solution-Treated and Aged) | 40-50 | ٧ٍ: | 2600 | 1950 | | 800 | 600 | | | | IN100, Udimet 720, Waspaloy, C1023, Rene 88, N-18 | | H _m : | 0.001 | 0.002 | | 0.03 | 0.05 | | | | | 20 [5] | ٧ _: | 3950 | 2600 | | 1200 | 800 | | | | S3: Wear-Resistant HRSA | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | | Stellite, Eutalloy, Metco, Wall Colmonoy, Weartech | 62 | ٧ٍ: | 1950 | 1650 | | 600 | 500 | | | | | | H _m : | 0.001 | 0.001 | | 0.02 | 0.03 | | | | | 40 | ٧ٍ: | 1500 | 1050 | | 450 | 320 | | | | H1: Carbon and Alloyed Steel | | H _m : | 0.003 | 0.0045 | | 0.08 | 0.12 | | | | All 4-digit AlSI-SAE grades: 1010, 1060, 4140, 2550, 2350, etc. | 60 | ٧ _: | 650 | 450 | | 200 | 140 | | | | | | H _m : | 0.002 | 0.0025 | | 0.05 | 0.065 | | | | H3: Tool Steel | 45 | ٧ _: : | 1300 | 900 | | 400 | 280 | | | | D2, M4, S7, A2, etc. | | H _m : | 0.003 | 0.0045 | | 0.08 | 0.12 | | | | | 65 | ٧ٍ: | 400 | 300 | | 120 | 85 | | | | | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | | H4: Nitrided and/or Carburized Steel | 64 | ٧ _: | 400 | 300 | | 120 | 85 | | | | 32CrMoV13, M50, M50NiL, M2, Pyrowear 675, Nitralloy | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | | K1: Lamellar (Grey) Cast Iron | | ٧ٍ: | | 3950 | 3950 | | 1200 | 1200 | | | GG15, GG25, GG35 (EN-GJL-150, EN-GJL-250, EN-GJL-350) | | H _m : | | 0.0045 | 0.0045 | | 0.12 | 0.12 | | | K2 ^[6] : Nodular Cast Iron | | ٧ٍ: | | 2950 | 2950 | | 900 | 900 | | | GGG40 – GGG80 (EN-GJS-400 – EN-GJS-800) | | H _m : | | 0.003 | 0.003 | | 0.08 | 0.08 | | | K3: Compacted Graphite Iron (CGI) | | ٧ٍ: | | 2450 | 2450 | | 750 | 750 | | | EN-GJV-300 — EN-GJV-500 | | H _m : | | 0.003 | 0.003 | | 0.08 | 0.08 | | ^[3] Solution Treated condition - most alloying elements are in solid solution, strength and hardness are low Table continued ⁽⁴⁾ Solution Treated and Aged condition – secondary phases have been precipitated. γ': Ni, Ti. & Ni, Al, so alloys with lower Al and Ti content (like Inconel 718) have less γ' and alloys with more Al and Ti (like IN100) have more γ'. The heat treatment (particularly solutioning temperature and aging temperature and time) also affect γ' fraction. ^[9] Where two sets of values are shown for different hardness, extrapolate cutting speed and chip thickness linearly to obtain starting cutting data for the material machined. ## **Speed and Chip Thickness Recommendations — Milling** (Continued) | | | | Cutting Speed: V _, [SFM] Average Chip Thickness: H _m [inch] | | | Cutting Speed: V _c [m/min] Average Chip Thickness: H _m [mm] | | | |---|----|------------------|---|-------------------|-----------------------|---|-------------------|---------------------| | | | | Averag | e Chip Thickness: | H _m [incn] | Averag | e Chip Thickness: | H _m [MM] | | | Н | Rc | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | WG-300°
WG-600°
WG-700™ | XSYTIN®-1 | GSN100™ | | K4: White Cast Iron | 60 | ٧ٍ: | 400 | 300 | | 120 | 85 | | | Ni-Hard, EN-GJN-HV350 — EN-GJN-HV600 | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | K5: Austempered Ductile Iron (ADI) | | ٧ _. : | | 1950 | | | 600 | | | EN-GJS-800 — EN-GJS-1400 | | H _m : | | 0.0035 | | | 0.09 | | | K6: Nitrided and/or Carburized Cast Iron | 64 | ٧ _. : | 400 | 300 | | 120 | 85 | | | K1 and K2 are commonly used as the parent material | | H _m : | 0.0015 | 0.0025 | | 0.04 | 0.06 | | | M1: Austenitic Stainless Steel | | ٧ _c : | 3300 | | | 1000 | | | | 304, 316, 301, 201, 202, 205, etc. | | H _m : | 0.0025 | | | 0.06 | | | | M2: Martensitic Stainless Steel | 50 | ٧ _c : | 1000 | | | 300 | | | | 416, 410, 420, 431, etc. | | H _m : | 0.0025 | | | 0.06 | | | | M3: Super-Austenitic Stainless Steel | | ٧ _. : | 3300 | | | 1000 | | | | S31266, 904L, N08031, S34565, 1.4588, etc. | | H _m : | 0.0025 | | | 0.06 | | | | M4: Duplex Stainless Steel | | ٧ _. : | 3300 | | | 1000 | | | | F51 (1.4462), F53 (1.4410), F55 (1.4501), 255 (1.4507), CD3MN | | H _m : | 0.0025 | | | 0.06 | | | | M5: Precipitation-Hardening Stainless Steel | 40 | ٧ _c : | 3300 | | | 1000 | | | | A286, PH14-8Mo, PH15-7Mo, 15-5PH, 15-7PH, 17-4PH, 17-7PH | | H _m : | 0.0025 | | | 0.06 | | | ## **Heat-Resistant Super Alloys (S)** Only round inserts should be used, with softer materials benefitting from the more positive cutting of RPGN. Climb/down mill for the best wear and tool life below 50 HRc, and combine down and up milling for the best wear and tool life above 50 HRc. Excessive wear leads to chips welding to the tool. The extreme strain that the workpiece material experiences in ceramic milling means that the surface is generally quite rough and should be finished with WC-Co tools. ## High-Carbon Martensite (H1, H3<60 HRc, M2) Below 60 HRc – XSYTIN®-1, climb/down milling. Above 60 HRc – WG-300®/WG-600®, conventional/up milling. ## Carbides and Nitrides (H3>60HRc, H4, K4, K6) Only round inserts should be used. WG-300°/WG-600°, conventional/up milling. ## ADI (K5) Round and straight-edged inserts in XSYTIN®-1 can be used with T2, A, or T2A edge preparations. ## Grey, Nodular, and Vermicular Cast Iron (K1, K2, K3) Round and straight-edged inserts in GSN100™ or XSYTIN®-1 can be used with T2 or T2A edge preparations. ## Low-Carbon Stainless Steel (M1, M2 (low-carbon), M3, M4, M5) Only round inserts in WG-600° or WG-300° with the T1A edge preparation should be used. Negative inserts will withstand the high cutting forces better and will generally perform better than positive inserts, despite the very high ductility of low-carbon stainless steels. #### Coolant Coolant in interrupted cuts only exacerbates thermal shock and causes cracks in the cutting tool to grow faster, drastically reducing tool life and increasing the likelihood of irregular wear. > Coolant should NOT be used in strongly interrupted cuts or milling with ceramics. **ATI** ## **Extended Material Guide** ## Heat-Resistant Super Alloys (S) ## Corrosion-Resistant HRSA (S1) Parts intended for service in corrosive environments are rarely heat treated to the same Ultimate Tensile Strength (UTS) and hardness as, for example, rotating components in an aircraft engine, though the same alloys (from the perspective of chemical composition, most notably Inconel 718) have been used in both types of applications. The main difference between the two, then, is the microstructure resulting from the heat treatment. S1 alloys are generally Ni-based, tough (large grain size), and enter service without a solutioning and aging treatment, relying on (coarse) primary precipitates for high-temperature strength. Many alloying elements are not bound in any ceramic or intermetallic species and are readily available to form passivating layers or regions, preventing the corrosive agents from penetrating deeper into the material. The alloying elements also provide solid solution strengthening. With a few exceptions, S1 alloys contain less Ti, Al, Nb, or V and more Fe than S2 alloys, because high-temperature strength is less of a priority and (especially through inclusion of more Fe) the cost of the alloy can then be made significantly lower. S1 alloys are rarely forged and more often cast, or wrought in ways that do not significantly affect their grain orientation or internal stresses. Some S1 alloys (most notably Inconel 625) can be deposited onto other base materials by means of welding, laser-sintering, etc. to provide a corrosion- and heat-resistant interface without the need for manufacturing whole parts out of a nickel-based material. ## High-Strength HRSA (S2) The main design criteria for S2 alloys are ultimate tensile strength, stress rupture strength, resistance to creep, resistance to fatigue crack growth, and resistance to oxidation at high temperatures. Most alloys in this sub-group contain some fraction of precipitates and a higher quantity of refractory metals which raise the overall melting temperature and form very stable carbides. All alloys in the S2 group exploit what's known as the yield strength anomaly where, because of the precipitation strengthening, the yield strength of the alloy increases (or remains constant) with increasing temperature until a certain maximum. The primary mechanism by which the majority of S2 alloys attain most of their high-temperature strength is precipitation hardening. Where the austenitic face-centered-cubic phase of nickel and cobalt are commonly denoted with γ, the (beneficial) precipitate phases are denoted with γ' (gamma prime, or g') for Ni₃Ti, Ni₃Al, Co₃Ti, Co₃Ta, and γ" (gamma double-prime, or g") for Ni₃Nb and Ni₃V. The average grain size of the matrix, the fraction of g' and g", their size, and their distribution in the matrix to a large extent determine the hardness and high-temperature UTS of the resulting part. Following solution
treatment, S2 alloys undergo aging, which, in the simplest of terms, raises the temperature sufficiently and for an appropriate period of time to allow just enough mobility of atoms for precipitates to form. Along with g' and g" this results in the formation of intergranular carbides. The remainder of the alloying elements in S2 alloys contribute in varying degrees to the formation of inter- and intragranular carbides, resistance to oxidation, and, crucially, stabilizing g' and g" (retardation of precipitation kinetics) because both phases are metastable and transform into nondesirable TCP phases when exposed to exceedingly high temperatures for extended periods of time, unfavorably altering the mechanical properties of the material. The same Ni-based alloy can be heat-treated to have different mechanical properties — optimizing tensile strength, stress-rupture strength, creep resistance, and other properties as desired. A higher quantity of precipitates invariably raises the hardness, however, so that stationary Ni-based components that are treated for impact toughness tend to be softer, more ductile, with larger grain size, and rotating components that are treated for tensile strength are harder, less ductile, and have lower grain size. Ni-based S2 parts are either cast (with directional solidification being the dominant route for turbine blades) forged from a VIM-VAR (Vacuum Induction Melting, Vacuum Arc Remelting) or HIP (Hot Isostatic Pressing — a method of compacting atomized powder to have better control of grain size and homogeneity) billet, rolled, or printed prior to heat-treatment and machining. Co-based S2 alloys are less common than their Ni-based counterparts because g' in Co is less stable at high temperatures, giving Ni-based alloys an advantage in strength-demanding high-temperature applications. However, carbides in Co-based alloys are more stable at temperatures exceeding 900C and so, in environments that do not require as much strength but require resistance to corrosion at very high temperatures Co-based alloys prevail. These are typically stationary components in gas turbines, and elements in and around combustion chambers. Co-based S2 alloys are cast and rarely aged before machining. ## Wear-Resistant HRSA (S3) These alloys are designed to have resistance to abrasive wear and galling at higher temperatures. Strength is then of lower importance and hardness, chemical stability, and passivating layers take center stage. Because of the higher stability of carbides in a cobalt matrix at high temperatures, cast S3 alloys are frequently cobalt-based. Many proprietary formulations for Ni- and Co-based wear-resistant alloys exist, with the most common denominator being a high fraction of Cr, Si, W, V, Mo, etc. carbides, nitrides, oxides, and borides. When not cast, they are applied to the base material through additive manufacturing. While the matrix of an S3 alloy remains ductile, the coarse secondary phases are hard and brittle, resulting in an alloy that behaves not unlike a grinding wheel when machined. If the hardness and size/fraction of the secondary phases are too high, it's possible that the material is not addressable with ceramics and can only be machined with CBN or processed through grinding. ## Hardened steel (H) ## **Carbon and Alloyed Hardened Steel (H1)** These steels are characterized by relatively low alloying content and a microstructure of martensite and ferrite. Depending on the heat treatment (austenitizing temperature, guench procedure, etc.) the hardness can vary considerably. The higher the martensite content, the higher the dislocation density and the higher the strength and hardness. Hardness and ductility here are inversely related – higher hardness corresponds with lower ductility. ## Maraging Steel (H2) Maraging steels (martensitic + aging) are a class of duplex-hardening ultra-highstrength steels that obtain their properties through a complex heat treatment process that increases the strength of a lath martensitic matrix with the precipitation of secondary phases — most commonly carbides. Maraging steels have high tensile strength, high hardness, and high toughness. Unlike in H1 steels, higher hardness in maraging steels does not correlate with lower ductility. ## Tool Steel (H3) Tool steels are so called because of their suitability for use as tools. Their high strength, hardness, and resistance to abrasion are a result of plate martensite and very hard carbides, predominantly of Cr, W, V, and Mo. Higher alloying content and carbide fraction is linked directly to higher hot-hardness, with High-Speed Steels (HSS) containing a significantly higher fraction of alloying elements. H3 steels are quenched and tempered, reaching 66HRc in hardness. The inverse correlation between hardness and ductility is definitely a property of H3 steels, with brittle intergranular fracture as the primary failure mode for the grades with a higher quantity of carbides. ## Nitrided and/or Carburized Steel (H4) Most steels can be surface-hardened through various means, with diffusion of nitrogen and carbon having the most pronounced effect on resistance to surface stresses and abrasion. Steels designed to be nitrided or carburized are typically hardened through conventional means prior to surface treatment and are known as duplex-hardening. The formation of carbides and nitrides in the layers of the materials adjacent to the surface introduces internal compressive stresses and raises the overall hardness. The nature of the nitriding or carburizing process determines the hardness of the compound layer and the depth of the diffusion zone. Mechanical properties of the material vary with varying carbide and nitride fraction from least ductile at the surface to most ductile past the diffusion zone. ## Cast Iron (K) ## Lamellar Cast Iron (K1) Lamellar cast iron, also known as grey cast iron, has graphite in the shape of flakes with sharp, point-like ends, which act as stress concentrators and sites for crack initiation, making it brittle and rather weak in tension or shear. Also because of the shape of the graphite, grey cast iron is excellent at conducting heat and converting mechanical energy into heat - making it a great material for use in dampening. A useful side effect is that nodular and grey cast irons can be told apart by whether or not the part 'rings' – grey cast iron will sound dull after being struck while nodular cast iron will audibly ring. ## Nodular Cast Iron (K2) Commonly through the addition of magnesium, graphite takes the shape of spherical nodules, serving to inhibit crack nucleation and improve the mechanical properties but hindering heat transfer. Also referred to as spheroidal graphite iron or ductile cast iron, owing to the higher ductility compared to grey cast iron. ## Compacted Graphite Iron (K3) Also known as Vermicular Graphite Iron, compacted graphite iron (or CGI) is a cast iron that follows a slightly different processing route and the graphite takes the shape of clusters of connected nodules with rounded ends, combining the best of the properties of lamellar and nodular cast irons. ## White Cast Iron (K4) White cast iron is a type of cast iron where most of the carbon forms carbides and cementite in a predominantly pearlitic or martensitic matrix. As a result of the high fraction of cementite and carbides white cast iron is extremely hard and brittle, with good compressive strength and excellent resistance to abrasion. ## Austempered Ductile Iron (K5) ADI is ductile (nodular) cast iron that has been alloyed and heat-treated to convert the matrix to ausferrite — acicular ferrite in an austenitic matrix, improving the tensile strength and ductility of nodular cast iron in a bid to replace structural steel at a lower ## Nitrided and/or Carburized Cast Iron (K6) In a similar fashion to steel, cast iron can be case-hardened through the diffusion of nitrogen and/or carbon in the surface layers, forming nitrides and carbides along grain boundaries. This raises the hardness, compressive stresses, and generally imparts more resistance to abrasion to the affected layer of material without compromising the material properties of the core. ## Stainless Steel (M) ## Austenitic Stainless Steel (M1) Austenitic stainless steel is probably the most common and widely used class of stainless steels. It has acceptable strength at slightly elevated temperatures, excellent corrosion resistance and ductility, and is easy to produce, requiring no special heat treatments. The austenite is stabilized through addition of nickel, manganese, and/or nitrogen, with nickel improving toughness and ductility and manganese improving strength at the expense of ductility. ## Martensitic Stainless Steel (M2) High-carbon martensitic stainless steel has the potential to be treated to the highest hardness (and also to be the most brittle) of all the stainless steels. Low-carbon martensitic stainless steels with the addition of nickel feature the same type of lath martensite that serves as the matrix in maraging steels (H2), which is significantly more ductile than plate martensite, despite the strength and hardness. ## Super-Austenitic Stainless Steel (M3) M3 alloys are austenitic with a higher volume of alloying elements (most notably nickel, molybdenum, and nitrogen) to increase corrosion resistance (commonly chloride pitting and crevice corrosion). They have higher strength than regular austenitic grades, comparable to that of duplex stainless steel. Higher nickel and chrome content are also responsible for excellent toughness and ductility. ## Duplex Stainless Steel (M4) Duplex stainless steels are so called because they combine two phases of iron at room temperature — approximately 50% ferrite and 50% austenite in a layered structure. Their resistance to corrosion is similar to that of austenitic stainless steels but they have considerably higher strength. Despite the higher strength, duplex
stainless steel is very ductile even at high strain rates. ## Precipitation-Hardening Stainless Steel (M5) Precipitation-Hardening (PH) stainless steels are a class of stainless steels that can be austenitic, martensitic, or a mix thereof in microstructure. Following solution treatment M5 alloys are aged to form Ni₃Cu, ordered Ni₃Ti and Ni₃Al g', carbides, and some less useful (Laves, Ni₃(Al,Ti), etc.) phases. These finely dispersed phases inhibit the movement of dislocations, raising the strength of the alloy. Coarsening of the precipitates as a result of overaging lowers the resulting strength because dislocations can then bypass them. The martensite in PH stainless steels is always lath martensite, lending this class of alloys ductility and toughness. Fully austenitic M5 alloys are, nevertheless, more ductile and able to deform plastically without failure to greater strains than their martensitic counterparts. The corrosion resistance of M5 alloys is comparable to that of austenitic stainless steels. | Notes: | | |--------|--| # **PRODUCT INDEX** ## Inserts | Insert | Pages | |------------------------|----------------| | | | | ACHN-3222 | | | ACHN-3422 | | | ADGT | | | APET | | | APHT | | | C-CDH (ceramic) | | | CDH (carbide) | | | CNGA (ceramic) | | | CNGG | T14 | | CNGN (ceramic) | M17, T49, HT19 | | CNGN (carbide) | , , | | CNMA | T15, HT10 | | CNMG | T14, HT10 | | CNMM | T14, HT10 | | COS | GP08 | | CPGN (ceramic) | M15, T57 | | CPGN (carbide) | M15, T33 | | DNGA (ceramic) | T50 | | DNGG | T16 | | DNGN (ceramic) | T50 | | DNMA | T17 | | DNMG | T16 | | DPGN-V | GP19 | | GBN | M30 | | GRM-GI | RM06 | | GTS | GP09 | | LNMN | HT24 | | LNP-335L | M34 | | LNP-335LW | M34 | | LNP-335R | M34 | | LNP-335RW | M34 | | LNP-34.57L | | | LNP-34.57LW | | | LNP-34.57R | | | LNP-34.57RW | | | LNP-34.57-90L | | | LNP-34.57-90R | | | LNUN | | | 00EW | | | | | | Pulley and Poly Groove | | | RCGN-V (ceramic) | | | RCGN-V (carbide) | | | RCGR | | | RCGR-V (ceramic) | | | RCGR-V (carbide) | | | RCGT | | | RCGT-V | | | RNGA (ceramic) | T51 | | RNGG | T18 | | Insert | Pages | |------------------|--------------------------| | RNGN (ceramic) | M17, M19, M23, T51, HT19 | | RNGN (carbide) | M17, M19, M23, T19, HT12 | | RNMA | | | RNMG | | | RNMM | | | ROEW | | | RPGN (ceramic) | | | RPGN (carbide) | | | RPGN-V (ceramic) | | | RPGN-V (carbide) | , | | RPGR | | | RPGR-V (ceramic) | | | | | | RPGR-V (carbide) | | | RPGT | | | RPGT-V | | | SNGA (ceramic) | | | SNGN (ceramic) | | | SNGN (carbide) | | | SNGN-128-R | | | SNMA | | | SNMA-IR | , | | SNMG | | | SNMM | T20, HT13 | | SNUN | | | SPGN (ceramic) | M15, M25, M27, T59, HT21 | | SPGN (carbide) | M15, M25, M27, T35, HT17 | | SPMT-2.522-X2 | ID05 | | SPMT-32.52 X2 | ID05 | | SPMT-432-X2 | ID05 | | SPUN | T35, HT17 | | S-SGUB-63 | TS07 | | S-SNUN-46 | TS07 | | S-SPUB-63 | TS06 | | S-SPUB-86 | TS06 | | TNGA (ceramic) | | | TNGG | | | TNGN (ceramic) | T54, HT20 | | TNGN (carbide) | | | TNMA | | | TNMG | | | TNMM | | | TNUN | | | TP (ceramic) | | | TP (carbide) | | | TPGA (ceramic) | | | | | | TPGA (carbide) | | | TPGN (ceramic) | | | TPGN (carbide) | M24, 136, H11/ | | Insert | Pages | |----------------|------------| | VCGN-V | GP18 | | VNGA (ceramic) | T55 | | VNGG | Т29 | | VNMA | Т30 | | VNMG | Т29 | | VPG-V | GP18 | | WCMT | Т39 | | WG (ceramic) | GP10, GP11 | | WGC | GP12, GP13 | | WNGA (ceramic) | T56 | | WNMA | Т32 | | WNMG | Т31 | # Toolholders, Boring Bars, Support Blades (Continued) | | , | ' ' | |---------------|---|-------| | Toolholders | | Pages | | 411015 | | GP60 | | 411016 | | GP60 | | 411055 | | GP60 | | 411056 | | GP60 | | 411059 | | GP60 | | 411449 | | GP60 | | 511292 | | GP44 | | 511296 | | GP44 | | 511297 | | GP44 | | 511298 | | GP44 | | 519600 | | GP60 | | 519601 | | GP60 | | 519602 | | GP60 | | 519603 | | GP60 | | 519604 | | GP60 | | 519605 | | GP60 | | 411009-4VR | | GP50 | | 411010-4VR | | GP50 | | 411011-3VR | | GP50 | | 411012-3VR | | GP50 | | 411066-156VG | | GP51 | | 411068-187VG | | GP51 | | 411081-218VG | | GP51 | | 411082-218VG | | GP52 | | 411085-281VG | | GP51 | | 411086-281VG | | GP52 | | 411087-312VG | | GP51 | | 411088-312VG | | GP52 | | 411089-344VG | | GP51 | | 411090-344VG | | GP52 | | 411122-375VG | | GP52 | | 411149-2VRS | | GP26 | | 411150-2VRS | | GP26 | | 411151-2VRS | | GP26 | | 411157-3VRS | | GP26 | | 411158-3VRS | | GP26 | | 411159-3VRS | | GP26 | | 411160-3VRS | | GP26 | | 411161-3VRS | | GP26 | | 411162-3VRS | | GP26 | | 411165-4VRS | | GP26 | | 411166-4VRS | | GP26 | | 411167-4VRS | | GP26 | | 411168-4VRS | | GP26 | | 411169-4VRS | | GP26 | | 411170-4VRS | | GP26 | | 411173-125VGS | | GP29 | | 411178-187VGS | | GP29 | | 411179-218VGS | | GP29 | | Diuues | (Continued) | |---------------|-------------| | Toolholders | Pages | | 411180-218VGS | GP29 | | 411183-281VGS | GP30 | | 411184-281VGS | GP30 | | 411186-312VGS | GP30 | | 411187-344VGS | GP30 | | 411188-344VGS | GP30 | | 411189-375VGS | GP30 | | 411190-375VGS | GP30 | | 411250-125VGS | GP29 | | GP30 411294-344VGS | | | | GP30 | | | GP30 | | | GP30 | | | GP34 | | Toolholders | Pages | |----------------|------------------| | 411709-187VGS | GP3 ² | | 411710-187VGS | GP3 ² | | 411711-187VGS | GP3 ² | | 411712-187VGS | GP3 ² | | 411713-187VGS | GP3 ² | | 411714-187VGS | GP3 ² | | 411717-218VGS | GP3 ² | | 411718-218VGS | GP3 ² | | 411719-218VGS | GP3 ² | | 411720-218VGS | GP3 ² | | 411721-218VGS | GP3 ² | | 411722-218VGS | | | 411725-250VGS | GP3 ² | | 411726-250VGS | GP3 ² | | 411727-250VGS | GP3 ² | | 411728-250VGS | GP3 ² | | 411729-250VGS | GP3 ² | | 411730-250VGS | GP3 ² | | 411733-281VGS | GP35 | | 411734-281VGS | GP35 | | 411735-281VGS | GP35 | | 411736-281VGS | GP35 | | 411737-281VGS | GP35 | | 411738-281VGS | GP35 | | 411743-312VGS | GP35 | | 411744-312VGS | GP35 | | 411745-312VGS | GP35 | | 411746-312VGS | GP35 | | 411751-344VGS | GP35 | | 411752-344VGS | GP35 | | 411753-344VGS | GP35 | | 411754-344VGS | GP35 | | 411759-375VGS | GP35 | | 411760-375VGS | GP35 | | 411761-375VGS | GP35 | | 411762-375VGS | GP35 | | 411956-2VRS | GP26 | | 411957-2VRS | GP26 | | 411958-2VRS | GP26 | | 411959-2VR | GP50 | | 411960-2VR | GP50 | | 411961-125VGS | GP29 | | 411962-125VGS | GP29 | | 411963-125VGS | GP29 | | 411964-156-VGS | GP29 | | 411965-156VGS | | | 411970-187VGS | GP29 | | 411971-187VGS | GP29 | | | | # **PRODUCT INDEX** Toolholders, Boring Bars, Support Blades (Continued) | 411973-250VGS | | |---|------| | 411974-250VGS411975-250VGS411982-312VGS | | | 411975-250VGS411982-312VGS | | | 411982-312VGS | GP30 | | | | | T11705 575105 | | | 411984-375VGS | | | 411988-125VG | | | 411989-125VG411989-125VG | | | 411990-156VG | | | 411991-187VG | | | | | | 411992-250VG | | | 411993-250VG | | | 411994-375VG | | | 115293-45VGS | | | 115294-45VGS | | | 115295-45VGS | | | 115296-45VGS | | | 115297-45VGS | GP33 | | 115298-45VGS | GP33 | | 115299-45VGS | GP33 | | 115300-45VGS | GP33 | | 115301-45VGS | GP33 | | 115302-45VGS | GP33 | | 115303-45VGS | GP33 | | 115304-45VGS | GP33 | | 415316-125VGS | GP31 | | 115317-125VGS | GP31 | | 415318-125VGS | GP31 | | 115319-125VGS | GP31 | | 115320-125VGS | GP31 | | 115321-125VGS | | | 115324-156VGS | | | 115325-156VGS | | | 115326-156VGS | | | 115327-156VGS | | | 115328-156VGS | | | 115329-156VGS | | | 115332-187VGS | | | | | | 115333-187VGS | | | #15334-187VGS | | | 115335-187VGS | | | 115336-187VGS | | | 115337-187VGS | | | 115340-218VGS | | | 415341-218VGS | | | 415342-218VGS | | | 115343-218VGS | GP31 | | I15344-218VGS | GP31 | 415345-218VGS......GP31 | Toolholders | Pages | |---------------|-------| | 415348-250VGS | GP32 | | 415349-250VGS | GP32 | | 415350-250VGS | GP32 | | 415351-250VGS | GP32 | | 415352-250VGS | GP32 | | 415353-250VGS | GP32 | | 415356-281VGS | GP32 | | 415357-281VGS | GP32 | | 415358-281VGS | GP32 | | 415359-281VGS | GP32 | | 415360-281VGS | GP32 | | 415361-281VGS | GP32 | | 415364-312VGS | GP32 | | 415365-312VGS | GP32 | | 415366-312VGS | GP32 | | 415367-312VGS | GP32 | | 415368-312VGS | GP32 | | 415369-312VGS | GP32 | | 415372-344VGS | GP32 | | 415373-344VGS | GP32 | | 415374-344VGS | GP32 | | 415375-344VGS | GP32 | | 415376-344VGS | GP32 | | 415377-344VGS | GP32 | | 415380-375VGS | GP32 | | 415381-375VGS | GP32 | | 415382-375VGS | GP32 | | 415383-375VGS | GP32 | | 415384-375VGS | GP32 | | 415385-375VGS | GP32 | | 415419-2VRS | GP26 | | 415420-2VRS | GP26 | | 415421-2VRS | GP26 | | 415422-2VRS | GP26 | | 415423-2VRS | GP26 | | 415424-2VRS | | | 415427-3VRS | GP26 | | 415428-3VRS | GP26 | | 415429-3VRS | GP26 | | 415430-3VRS | GP26 | | 415431-3VRS | GP26 | | 415432-3VRS | | | 415435-4VRS | GP26 | | 415436-4VRS | GP26 | | 415437-4VRS | GP26 | | 415438-4VRS | GP26 | | 415439-4VRS | GP26 | | 415440-4VRS | | | 121100_125VG | CDEO | | ### ### ############################## | Toolholders | Dagos |
--|------------------|-------| | 421102-187VG GP52 421103-218VG GP52 421104-250VG GP52 421105-281VG GP52 421106-312VG GP52 421107-344VG GP52 421108-375VG GP52 421109-125VG GP51 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421114-281VG GP51 421115-312VG GP51 421116-344VG GP51 421119-1255-035 GP54 421119-1255-035 GP54 421121-1255-055 GP54 421121-1255-055 GP54 421121-1255-075 GP54 421121-1875-030 GP54 421121-1875-035 421121-1875-055 GP54 421121-1875-055 <td< th=""><th>Toomolaers</th><th>Pages</th></td<> | Toomolaers | Pages | | 421103-218VG | | | | 421104-250VG GP52 421105-281VG GP52 421106-312VG GP52 421107-344VG GP52 421108-375VG GP52 421109-125VG GP51 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421117-375VG GP51 421118-1255-030 GP54 421120-1255-0425 GP54 421121-1255-055 GP54 421121-1255-055 GP54 421125-1255-075 GP54 421125-1875-030 GP54 421126-1875-0425 GP54 421127-1875-035 421138-1875-0425 | 421102-187VG | GP52 | | 421105-281VG GP52 421106-312VG GP52 421107-344VG GP52 421108-375VG GP52 421109-125VG GP51 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421118-1255-030 GP54 421119-1255-035 GP54 421120-1255-0425 GP54 421121-1255-055 GP54 421121-1255-075 GP54 421122-1255-075 GP54 421123-1255-125 GP54 421121-1875-035 GP54 421125-1875-035 GP54 421121-1875-035 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421127-1875-055 GP54 421127-1875-055 GP54 421130-2505-0425 GP54 421131-2505-0425 GP54 421131-2505-0425 GP54 421133-3125-03 | 421103-218VG | GP52 | | 421106-312VG GP52 421107-344VG GP52 421108-375VG GP52 421109-125VG GP51 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421117-375VG GP51 421118-1255-030 GP54 421119-1255-035 GP54 42112-1255-0425 GP54 42112-1255-075 GP54 42112-1255-075 GP54 42112-1255-075 GP54 42112-1255-075 GP54 42112-127-1275-075 GP54 42112-127-1275-075 GP54 42112-127-1275-075 GP54 42112-127-1275-055 GP54 42112-127-1275-055 GP54 42112-127-1275-055 GP54 42113-12505-0425 GP54 42113-12505-0425 GP54 42113-12505-0425 GP54 42113-12505-0425 GP54 42113-12505-060 GP54 | 421104-250VG | GP52 | | 421107-344VG | 421105-281VG | GP52 | | 421108-375VG GP52 421109-125VG GP51 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421118-1255-030 GP54 421119-1255-035 GP54 421120-1255-0425 GP54 421121-1255-055 GP54 421123-1255-125 GP54 421124-1875-030 GP54 421127-1875-0425 GP54 421128-1255-075 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421128-1875-035 GP54 421129-1875-125 GP54 421129-1875-125 GP54 421129-1875-125 GP54 421130-2505-030 GP54 421131-2505-0425 GP54 421131-2505-060 GP54 421137-3125-090 GP54 421138-3125-090 GP54 42114- | 421106-312VG | GP52 | | 421109-125VG .GP51 421111-187VG .GP51 421111-2218VG .GP51 421113-250VG .GP51 421114-281VG .GP51 421115-312VG .GP51 421116-344VG .GP51 421117-375VG .GP51 421118-125S-030 .GP54 421119-125S-0425 .GP54 421120-125S-0425 .GP54 421121-125S-055 .GP54 421123-125S-125 .GP54 421124-187S-030 .GP54 421125-187S-035 .GP54 421127-187S-035 .GP54 421128-187S-075 .GP54 421127-187S-035 .GP54 421127-187S-055 .GP54 421128-187S-0425 .GP54 421129-187S-055 .GP54 421129-187S-055 .GP54 421130-250S-030 .GP54 421131-250S-0425 .GP54 421131-250S-045 .GP54 421133-250S-085 .GP54 421138-312S-030 .GP54 421138-312S-090 .GP54 421141-375S-090 .GP54 | 421107-344VG | GP52 | | 421110-156VG GP51 421111-187VG GP51 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421117-375VG GP51 421118-1255-030 GP54 421120-1255-0425 GP54 421121-1255-055 GP54 421122-1255-075 GP54 421123-1255-125 GP54 421124-1875-030 GP54 421125-1875-035 GP54 421126-1875-0425 GP54 421127-1875-035 GP54 421127-1875-035 GP54 421128-1875-035 GP54 421129-1875-0425 GP54 421129-1875-055 GP54 421130-2505-030 GP54 421131-2505-0425 GP54 421131-2505-0425 GP54 421131-2505-045 GP54 421131-2505-055 GP54 421133-2505-085 GP54 421137-3125-090 GP54 421138-3125-190 GP54 421140-3755-050 | 421108-375VG | GP52 | | 421111-187VG .GP51 421112-218VG .GP51 421113-250VG .GP51 421114-281VG .GP51 421115-312VG .GP51 421116-344VG .GP51 421117-375VG .GP51 421118-125S-030 .GP54 421119-125S-035 .GP54 421120-125S-0425 .GP54 421121-125S-055 .GP54 421122-125S-075 .GP54 421123-125S-125 .GP54 421125-187S-035 .GP54 421126-187S-0425 .GP54 421126-187S-035 .GP54 421127-187S-055 .GP54 421128-187S-075 .GP54 421129-187S-125 .GP54 421130-250S-030 .GP54 421131-250S-0425 .GP54 421131-250S-045 .GP54 421131-250S-055 .GP54 421131-250S-050 .GP54 421131-250S-050 .GP54 421138-312S-090 .GP54 421139-375S-030 .GP54 421140-375S-050 .GP54 421141-375S-090 .GP54 | 421109-125VG | GP51 | | 421112-218VG GP51 421113-250VG GP51 421115-312VG GP51 421116-344VG GP51 421117-375VG GP51 421118-1255-030 GP54 421119-1255-0425 GP54 42112-1255-0425 GP54 42112-1255-055 GP54 42112-1255-075 GP54 42112-1255-035 GP54 42112-1255-075 GP54 42112-1255-075 GP54 42112-1875-030 GP54 42112-1875-035 GP54 42112-1875-0425 GP54 42112-1875-055 GP54 42112-1875-055 GP54 42112-1875-055 GP54 42112-1875-055 GP54 42112-1875-055 GP54 42113-2505-030 GP54 42113-2505-0425 GP54 42113-2505-085 GP54 42113-2505-085 GP54 42113-2505-085 GP54 42113-3125-090 GP54 42114-3755-050 GP54 42114-3755-090 . | 421110-156VG | GP51 | | 421113-250VG GP51 421114-281VG GP51 421115-312VG GP51 421116-344VG GP51 421117-375VG GP51 421118-125S-030 GP54 421119-125S-0425 GP54 421120-125S-0425 GP54 421121-125S-055 GP54 421122-125S-075 GP54 421123-125S-125 GP54 421124-187S-030 GP54 421125-187S-035 GP54 421126-187S-0425 GP54 421127-187S-055 GP54 421128-187S-075 GP54 421129-187S-125 GP54 421130-250S-030 GP54 421131-250S-0425 GP54 421131-250S-0425 GP54 421131-250S-085 GP54 421135-312S-030 GP54 421136-312S-050 GP54 421139-375S-050 GP54 421141-375S-090 GP54 421141-375S-090 GP54 421141-375S-090 GP54 421141-375S-090 GP54 421141-25 | 421111-187VG | GP51 | | 421114-281VG | 421112-218VG | GP51 | | 421115-312VG .GP51 421116-344VG .GP51 421117-375VG .GP51 421118-1255-030 .GP54 421119-1255-035 .GP54 421120-1255-0425 .GP54 421121-1255-055 .GP54 421122-1255-075 .GP54 421123-1255-125 .GP54 421124-1875-030 .GP54 421125-1875-035 .GP54 421126-1875-0425 .GP54 421127-1875-055 .GP54 421128-1875-075 .GP54 421129-1875-125 .GP54 421129-1875-125 .GP54 421131-2505-0425 .GP54 421131-2505-0425 .GP54 421131-2505-085 .GP54 421133-2505-085 .GP54 421135-3125-030 .GP54 421139-3755-030 .GP54 421139-3755-050 .GP54 421140-3755-050 .GP54 421141-3755-090 .GP54 421141-3755-090 .GP54 421141-3755-090 .GP54 421145-125L-0425 .GP54 421145-125L-055 | 421113-250VG | GP51 | | 421116-344VG .GP51 421117-375VG .GP51 421118-125S-030 .GP54 421119-125S-0425 .GP54 421120-125S-0425 .GP54 421121-125S-075 .GP54 421122-125S-075 .GP54 421123-125S-125 .GP54 421125-187S-030 .GP54 421125-187S-035 .GP54 421126-187S-0425 .GP54 421127-187S-055 .GP54 421128-187S-075 .GP54 421129-187S-125 .GP54 421130-250S-030 .GP54 421131-250S-0425 .GP54 421131-250S-0425 .GP54 421133-250S-085 .GP54 421135-312S-030 .GP54 421137-312S-090 .GP54 421139-375S-050 .GP54 421140-375S-050 .GP54 421141-375S-090 .GP54 421141-375S-090 .GP54 421145-125L-035 .GP54 421145-125L-045 .GP54 421145-125L-075 .GP54 421147-125L-075 .GP54 421147-125L-075 < | 421114-281VG | GP51 | | 421117-375VG. .GP51 421118-1255-030 .GP54 421119-1255-0425 .GP54 421121-1255-055 .GP54 421122-1255-075 .GP54 421123-1255-125 .GP54 421124-1875-030 .GP54 421125-1875-035 .GP54 421126-1875-0425 .GP54 421129-1875-055 .GP54 421129-1875-055 .GP54 421129-1875-125 .GP54 421129-1875-125 .GP54 421130-2505-030 .GP54 421131-2505-0425 .GP54 421132-2505-085 .GP54 421135-3125-030 .GP54 421136-3125-050 .GP54 421137-3125-090 .GP54 421140-3755-050 .GP54 421141-3755-090 .GP54 421141-3755-090 .GP54 421142-3755-190 .GP54 421145-125L-035 .GP54 421145-125L-0425 .GP54 421146-125L-055 .GP54 421147-125L-075 .GP54 | 421115-312VG | GP51 | | 421118-1255-030 | 421116-344VG | GP51 | | 421119-125S-035 | 421117-375VG | GP51 | | 421119-125S-035 | 421118-125S-030 | GP54 | | 421120-1255-0425 | | | | 421121-1255-055 .GP54 421122-1255-075 .GP54 421123-1255-125 .GP54 421124-1875-030 .GP54 421125-1875-035 .GP54 421126-1875-0425 .GP54 421127-1875-055 .GP54 421129-1875-125 .GP54 421130-2505-030 .GP54 421131-2505-0425 .GP54 421132-2505-060 .GP54 421133-2505-085 .GP54 421135-3125-030 .GP54 421137-3125-090 .GP54 421138-3125-050 .GP54 421139-3755-030 .GP54 421139-3755-050 .GP54 421139-3755-050 .GP54 421140-3755-050 .GP54 421141-3755-090 .GP54 421141-3755-090 .GP54 421142-3755-190 .GP54 421145-125L-035 .GP54 421145-125L-0425 .GP54 421147-125L-075 .GP54 421147-125L-075 .GP54 | | | | 421122-1255-075 | | | | 421123-1255-125 | | | | 421124-1875-030 | | | | 421125-1875-035 | | | | 421126-1875-0425 GP54 421127-1875-055 GP54 421128-1875-075 GP54 421129-1875-125 GP54 421130-2505-030 GP54
421131-2505-0425 GP54 421132-2505-060 GP54 421133-2505-085 GP54 421134-2505-155 GP54 421135-3125-030 GP54 421137-3125-090 GP54 421138-3125-190 GP54 421140-3755-050 GP54 421141-3755-090 GP54 421141-3755-090 GP54 421141-3755-090 GP54 421142-3755-190 GP54 421141-3755-090 GP54 421142-3755-190 GP54 421145-125L-030 GP54 421145-125L-0425 GP54 421146-125L-055 GP54 421147-125L-075 GP54 421147-125L-075 GP54 | | | | 421127-1875-055 | | | | 421128-1875-075 | | | | 421129-1875-125 | | | | 421130-2505-030 | | | | 421131-250S-0425 GP54 421132-250S-060 GP54 421133-250S-085 GP54 421134-250S-155 GP54 421135-312S-030 GP54 421137-312S-090 GP54 421138-312S-190 GP54 421139-375S-030 GP54 421140-375S-050 GP54 421141-375S-090 GP54 421141-375S-090 GP54 421142-375S-190 GP54 421143-125L-030 GP54 421145-125L-035 GP54 421145-125L-0425 GP54 421146-125L-055 GP54 421147-125L-075 GP54 | | | | 421132-2505-060 | | | | 421133-2505-085 | | | | 421134-2505-155 | | | | 421135-3125-030 | | | | 421136-3125-050 | | | | 421137-3125-090 | | | | 421138-3125-190 | | | | 421139-3755-030 | | | | 421140-3755-050 | | | | 421141-3755-090 GP54 421142-3755-190 GP54 421143-125L-030 GP54 421144-125L-035 GP54 421145-125L-0425 GP54 421146-125L-055 GP54 421147-125L-075 GP54 | | | | 421142-3755-190 | | | | 421143-125L-030 | | | | 421144-125L-035 | | | | 421145-125L-0425 | | | | 421146-125L-055GP54 421147-125L-075GP54 | | | | 421147-125L-075GP54 | 421145-125L-0425 | GP54 | | | 421146-125L-055 | GP54 | | 421148-125L-125GP54 | 421147-125L-075 | GP54 | | | 421148-125L-125 | GP54 | 421149-187L-030..... 421100-125VG..... # Toolholders, Boring Bars, Support Blades (Continued) | Toolhol | lders | Pages | |-----------|----------|-------| | 421150-18 | 87L-035 | GP54 | | | 87L-0425 | | | 421152-18 | 87L-055 | GP54 | | | 87L-075 | | | | 87L-125 | | | | 50L-030 | | | | 50L-0425 | | | | 50L-060 | | | 421158-25 | 50L-085 | GP54 | | 421159-25 | 50L-155 | GP54 | | | 12L-030 | | | 421161-31 | 12L-050 | GP54 | | | 12L-090 | | | | 12L-190 | | | | 75L-030 | | | | 75L-050 | | | | 75L-090 | | | 421167-37 | 75L-190 | GP54 | | 421168-12 | 25S-030 | GP55 | | 421169-12 | 25S-035 | GP55 | | | 25S-0425 | | | 421171-12 | 25S-055 | GP55 | | 421172-12 | 25S-075 | GP55 | | 421173-12 | 25S-125 | GP55 | | 421174-18 | 87S-030 | GP55 | | 421175-18 | 87S-035 | GP55 | | 421176-18 | 87S-0425 | GP55 | | 421177-18 | 87S-055 | GP55 | | 421178-18 | 87S-075 | GP55 | | | 87S-125 | | | | 50S-030 | | | 421181-25 | 50S-0425 | GP55 | | 421182-25 | 50S-060 | GP55 | | 421183-25 | 50S-085 | GP55 | | 421184-25 | 50S-155 | GP55 | | 421185-31 | 12S-030 | GP55 | | 421186-31 | 12S-050 | GP55 | | 421187-31 | 12S-090 | GP55 | | 421188-31 | 12S-190 | GP55 | | 421189-37 | 75S-030 | GP55 | | 421190-37 | 75S-050 | GP55 | | 421191-37 | 75S-090 | GP55 | | 421192-37 | 75S-190 | GP55 | | 421193-12 | 25L-030 | GP55 | | | 25L-035 | | | | 25L-0425 | | | | 25L-055 | | | | 25L-075 | | | 421198-12 | 25L-125 | GP55 | | | | | | Diades | (Continued) | |-----------------|-------------| | Toolholders | Pages | | 421199-187L-030 | GP55 | | 421200-187L-035 | GP55 | | 421201-187L-042 | 5GP55 | | | GP55 | | | GP55 | | | GP55 | | | GP55 | | | 5GP55 | | | GP55 GP53 | | | GP53 | | | 5GP53 | | | GP53 | | | GP53 | | | GP53 | | | | | | GP53 | | | | | | 5GP53 | | | GP53 | | | GP53 | | | GP53 | | | GP53 | | | 5GP53 | | | GP53 421245-125L-042 | 5GP53 | | 421246-125L-055 | GP53 | 421247-125L-075.. | Toolholders | Pages | |------------------------------------|-------| | 421248-125L-125 | GP53 | | 421249-187L-030 | GP53 | | 421250-187L-035 | GP53 | | 421251-187L-0425 | GP53 | | 421252-187L-055 | GP53 | | 421253-187L-075 | GP53 | | 421254-187L-125 | GP53 | | 421255-250L-030 | GP53 | | 421256-250L-0425 | GP53 | | 421257-250L-060 | GP53 | | 421258-250L-085 | GP53 | | 421259-250L-155 | GP53 | | 421260-312L-030 | GP53 | | 421261-312L-050 | GP53 | | 421262-312L-090 | GP53 | | 421263-312L-190 | GP53 | | 421264-375L-030 | GP53 | | 421265-375L-050 | | | 421266-375L-090 | | | 421267-375L-190 | | | 421268-125S-030 | | | 421269-125S-035 | | | 421270-125S-0425 | | | 421271-125S-055 | | | 421271-1255-055
421272-125S-075 | | | | | | 421273-125S-125 | | | 421274-187S-030 | | | 421275-187S-035 | | | 421276-187S-0425 | | | 421277-187S-055 | | | 421278-187S-075 | | | 421279-187S-125 | | | 421280-250S-030 | GP56 | | 421281-250S-0425 | GP56 | | 421282-250S-060 | GP56 | | 421283-250S-085 | GP56 | | 421284-250S-155 | GP56 | | 421285-312S-030 | GP56 | | 421286-312S-050 | GP56 | | 421287-312S-090 | GP56 | | 421288-312S-190 | GP56 | | 421289-375S-030 | GP56 | | 421290-375S-050 | GP56 | | 421291-375S-090 | GP56 | | 421292-375S-190 | GP56 | | 421293-125L-030 | GP56 | | 421294-125L-035 | GP56 | | 421295-125L-0425 | GP56 | | 421296-1251-055 | | # **PRODUCT INDEX** Toolholders, Boring Bars, Support Blades (Continued) | rounidacis, builing | υαις, σαρρι | |---------------------|-------------| | Toolholders | Pages | | 421297-125L-075 | GP56 | | 421298-125L-125 | | | 421299-187L-030 | | | 421300-187L-035 | | | 421301-187L-0425 | | | 421302-187L-055 | | | 421303-187L-075 | | | 421304-187L-125 | | | | | | 421305-250L-030 | | | 421306-250L-0425 | | | 421307-250L-060 | | | 421308-250L-085 | | | 421309-250L-155 | | | 421310-312L-030 | | | 421311-312L-050 | | | 421312-312L-090 | | | 421313-312L-190 | GP56 | | 421314-375L-030 | GP56 | | 421315-375L-050 | GP56 | | 421316-375L-090 | GP56 | | 421317-375L-190 | GP56 | | 421450-2VMRS | GP27 | | 421451-2VMRS | GP27 | | 421452-2VMRS | GP27 | | 421453-2VMRS | GP27 | | 421454-2VMRS | GP27 | | 421455-2VMRS | GP27 | | 421458-3VMRS | GP27 | | 421459-3VMRS | GP27 | | 421460-3VMRS | GP27 | | 421461-3VMRS | GP27 | | 421462-3VMRS | GP27 | | 421463-3VMRS | | | 421466-4VMRS | | | 421467-4VMRS | | | 421468-4VMRS | | | 421469-4VMRS | | | 421470-4VMRS | | | 421471-4VMRS | | | | | | 421498-2VMRS | | | 421499-2VMRS | | | 421500-2VMRS | | | 421501-2VMRS | | | 421502-2VMRS | | | 421503-2VMRS | | | 421504-3VMRS | | | 421505-3VMRS | | | 421506-3VMRS | | | 424E07 2VMDC | CD27 | 421507-3VMRS......GP27 | Diades | (Continued) | |-----------------|-------------| | Toolholders | Pages | | 421508-3VMRS | GP27 | | 421509-3VMRS | GP27 | | 421510-4VMRS | GP27 | | 421511-4VMRS | GP27 | | 421512-4VMRS | GP27 | | 421513-4VMRS | GP27 | | 421514-4VMRS | GP27 | | 421515-4VMRS | GP27 | | 421534-2VMR | GP50 | | 421535-2VMR | GP50 | | 421536-3VMR | GP50 | | 421537-3VMR | GP50 | | 421538-4VMR | GP50 | | 421539-4VMR | GP50 | | 427635-094VGS | GP29 | | 427636-094VGS | GP29 | | 427637-094VGS | GP29 | | 427638-094VGS | GP29 | | | GP29 | | | GP29 | | | GP31 | | 427646-094VGS | GP31 | | | GP51 | | 427648-094VG | GP51 | | 427649-094VG | GP52 | | 427650-094VG | GP52 | | | GP43 | | 511288-3VRB | GP43 | | 511289-3VRB | GP43 | | | GP43 | | | GP43 | | | GP40 | | 511311-156VGB | GP40 | | J. 1J2T J44 VUU | dr40 | | Toolholders | Pages | |----------------|-------| | 511326-375VGB | GP40 | | 511339-B244VR | | | 511340-B244VL | | | 511343-B324VR | | | 511344-B324VL | | | 511347-B404VR | | | 511348-B404VL | | | 512074-125VGS | | | 512075-125VGS | | | 512086-156VGS | | | 512087-156VGS | | | 512098-187VGS | | | 512099-187VGS | | | 512106-218VGS | | | 512107-218VGS | | | 512116-250VGS | | | 512117-250VGS | | | 512126-281VGS | | | 512127-281VGS | | | 512132-312VGS | | | 512133-312VGS | | | 512138-344VGS | | | 512139-344VGS | | | 512144-375VGS | | | 512145-375VGS | | | 512227-2VRB | | | 512228-125VGB | | | 512229-218VGB | | | 512230-250VGB | | | 518554-24-35VR | | | 518555-24-35VL | | | 518556-32-35VR | | | 518557-32-35VL | | | 518558-40-35VR | | | 518559-40-35VL | | | 518560-32-55VR | | | 518561-32-55VL | | | 518562-40-55VR | | | 518563-40-55VL | | | 519700-2VMRB | | | 519701-2VMRB | | | 519702-2VMRB | | | 519703-2VMRB | | | 519704-2VMRB | | | 519705-2VMRB | | | 519706-2VMRB | | | 519707-2VMRB | | | 519708-3VMRB | | | | | 511325-375VGB..... # Toolholders, Boring Bars, Support Blades (Continued) | , | , | ' ' | |--------------|---|-------| | Toolholders | | Pages | | 519710-3VMRB | | GP41 | | 519711-3VMRB | | GP41 | | 519712-3VMRB | | GP41 | | 519713-3VRMB | | GP41 | | 519714-4VMRB | | GP41 | | 519715-4VMRB | | GP41 | | 519716-4VMRB | | GP41 | | 519717-4VMRB | | GP41 | | 519718-4VMRB | | | | 519719-4VMRB | | | | 519740-2VMRB | | | | 519741-2VMRB | | | | 519742-3VMRB | | | | 519743-3VMRB | | | | 519744-4VMRB | | | | 519745-4VMRB | | | | C-CCKP | | | | C-CCLP | | | | C-CCRP | | | | C-CCSP | | | | | | | | C-CRGP | | | | C-CSDPN | | | | C-CSKP | | | | C-CSRP | | | | C-CSSP | | | | C-CTCP | | | | C-CTFP | | | | C-CTGP | | | | C-CTLP | | | | CDJOR/L-V | | | | CDPON-V | | GP36 | | C-MCKN | | T92 | | C-MCLN | | | | C-MCRN | | T93 | | C-MCSN | | | | C-MDJN | | T94 | | C-MDPNN | | T94 | | C-MRDNN | | T95 | | C-MRGN | | T95 | | C-MSKN | | T96 | | C-MSRN | | T96 | | C-MSSN | | T97 | | C-MTFN | | T98 | | C-MTGN | | T98 | | C-MTLN | | T99 | | C-MWLN | | T99 | | CRDPN-V | | GP24 | | CRDPN-VM | | GP25 | | CRDPN-VMS | | GP25 | | Toolholders Page | 25 | |------------------|----| | CRDPN-VSGP: | | | CRGPR-VGP: | | | CRGPR-VMGP: | | | C-SWFC | | | C-SWLC | | | | | | CVJOR/L-V | | | GC6-MCLN | | | | | | GC8-MCN | | | GC6-MRGN | | | GC8-MRGN | | | GC6-CRGP | | | GC8-CRGP | | | GC6-CRDPN-V | | | GC8-CRDPN-VTi | | | G-CCRPT | | | G-CSKPTi | | | G-CTAPT | | | G-CTCPTi | | | G-MCGNTo | | | G-MCKNTo | | | G-MCLNTo | | | G-MCRNTo | | | G-MDJNTo | | | G-MDPNNTo | 58 | | G-MRGNTo | 69 | | G-MSBNT | 70 | | G-MSDNNT | 71 | | G-MSKNT | 71 | | G-MSRNT | 72 | | G-MSSNT | 72 | | G-MTANT | 73 | | G-MTENNS | 73 | | G-MTFNT | 74 | | G-MTGN | 75 | | G-MTJNT | 75 | | G-MTLNT | 76 | | G-MVJNT | 77 | | G-MVTN | | | G-MVVNNT | | | G-MWLNT | | | GSRN | | | HM3XID0 | | | H-MCLN | | | H-MRGN T10 | | | H-MSRN | | | H-MWLN | | | H-SROONHT. | | | N-SSCPS TSI | | | Toolholders | Pages | |--------------------------|--------------------| | N-WSCNN | TS09 | | Quick-Change Toolholders | T84, T85, T86, T87 | | SB-CCKP | | | SB-CCLP | T119 | | SB-CSKP | | | SB-CTFP |
T121 | | SBH-C5-F | GP61 | | SBH-C5-S | GP61 | | SBH-C6-F | GP61 | | SBH-C6-S | GP61 | | SBH-KM50-F | GP61 | | SBH-KM50-S | GP61 | | SBH-KM63-S | GP61 | | SB-MCKN | | | SB-MCLN | T114 | | SB-MDUN | T115 | | SB-MSKN | | | SB-MTFN | T117 | | SB-MTKN | | | SB-MWLN | | | S-CCFP | | | S-CCKN | T130 | | S-CCKP | T134 | | S-CCLN | T130 | | S-CCLP | T134 | | S-CCLP (Heavy Metal) | T135 | | S-CDLN | T131 | | S-CRGN | T131 | | S-CRGP | T135 | | S-CSKN | T132 | | S-CSKP | T136 | | S-CSSN | T132 | | S-CSSP | T136 | | S-CTFN | T133 | | S-CTFP | T137 | | S-CWLN | T133 | | S-STFN | | | S-SWFC | T122 | | S-SWLC | T123 | | VJOR/L-V | GP38 | | | 6000 | # **PRODUCT INDEX** # Milling Cutters | Milling Cutters | Pages | |-----------------|-------| | C-4 Series | M16 | | CP-4 Series | M14 | | EM90S/L | M06 | | FM90S/L | M06 | | FMRN | M19 | | FMRNF | M19 | | FMRP | M18 | | FMRPF | M18 | | G-OFHP | M10 | | M430LNP-A | M34 | | SSBN | M30 | | WSAN | M26 | | WSRN | M22 | | WSRNF | M22 | | WSRP | M20 | | WSRPF | M20 | | WSSP | M25 | | WSTP | M24 | | XFSP | M27 | # Ring Max™ | Ring Max™ | Pages | |-------------------------|-------| | GRM Grooving Cartridges | RM23 | | GRM Chamfer Cartridges | RM24 | | GRM2-BX | RM10 | | GRM2-R | RM11 | | GRM2-RX | RM12 | | GRM2-10K | RM12 | | GRM2-15K | RM12 | | GRM3-BX | RM18 | | GRM3-R | RM18 | | GRM3-RX | RM18 | | GRM3-10K | RM18 | | GRM3-15K | RM18 | | GRM Shanks | RM19 | | STXBX | RM28 | | STXR | RM28 | | STX1015 | RM28 | Greenleaf Corporation is continually upgrading its products. For the most current information, please visit our web site at: https://greenleafcorporation.com or scan the QR Code If you have questions about how Greenleaf Corporation can help you with your specific needs, contact your Greenleaf representative. ## **Greenleaf Corporation** 18695 Greenleaf Drive Saegertown, PA 16433 USA 800-458-1850 • 814-763-2915 sales@greenleafcorporation.com ## **Greenleaf Europe BV** De Steeg 2 6333 AP Schimmert The Netherlands +31-45-404-1774 eurooffice@greenleafcorporation.com ## Greenleaf (Hunan) High-Tech Materials Co., Ltd. Changsha, Hunan 410205, China +86-731-89954796 info@greenleafcorporation.com.cn Greenleaf Corporation is a leading supplier of industrial cutting tools, specializing in the manufacture of high-performance tungsten carbide and ceramic grade inserts and innovative tool-holding systems. Greenleaf continues to build on nearly 80 years of innovation and the legacy established by its founder Walter J. Greenleaf, Sr., which centers on supplying customers with productive solutions to every metal-cutting situation. ## **Greenleaf Corporation** 18695 Greenleaf Drive Saegertown, PA 16433 USA 800-458-1850 • 814-763-2915 sales@greenleafcorporation.com ## **Greenleaf Europe BV** De Steeg 2 6333 AP Schimmert The Netherlands +31-45-404-1774 eurooffice@greenleafcorporation.com ## Greenleaf (Hunan) High-Tech Materials Co., Ltd. Changsha, Hunan 410205, China +86-731-89954796 info@greenleafcorporation.com.cn Discover more at: https://greenleafcorporation.com